
RTS2: meta-queues scheduling and its realisation for FLWO
1.2m telescope

Petr Kubáneka, Emilio Falcob, Martin Jeĺınekc, Michael Prouzaa, Jan Štrobld, Martin Fuchse

and Javier Gorosabelc

aInstitute of Physics, Academy of Sciences, Praha, Czech Republic;
bSAO/FLWO, Amado, AZ, USA;

cInstituto de Astrof́ısica de Andalućıa CSIC, Granada, Spain;
dAstronomical Institute, Academy of Sciences, Ondřejov, Czech Republic;

eŠtefánik Observatory, Petř́ın, Praha, Czech Republic;

ABSTRACT

RTS2, or Remote Telescope System 2nd Version, is an open-source, distributed and modular observatory control
system. During the course of its development lasting over a decade, the original goal to develop software capable
of searches for optical transients of γ-ray bursts changed to develop a system for full control of large observatories
executing complex observing scenarios.

In this presentation, we would like to share our experience with meta-queues scheduling, developed primarily
for automation of the FLWO 1.2m telescope. Meta-queues scheduling allows observers to quickly build and com-
bine different observational scenarios, while still retaining ToO and weather interruption capabilities. Thanks
to the queues and scheduling graphical user interface, observers can use the system without the need to under-
stand complex functions used in the traditional merit function scheduling. By combining meta-queues and merit
function scheduling, observatories can offer different options to schedule their observations to their users, so the
acquired data will match the observers’ expectations.

Keywords: autonomous observatory, robotic telescope, telescope network, RTS2

1. INTRODUCTION

The development of software which operates an autonomous observatory is not an easy task. The development of
software which allows observatory users with different scheduling requirements to schedule observations, obtain
the observations, process the observations and perform other tasks associated with running an observatory is a
task at least an order of magnitude harder.

It is of course not easy to design and code scheduling for a space-based observatory,1 but it is even more
challenging to design and code scheduling for a ground-based observatory. The ground environment is more
dynamic and less predictable than the space environment. Scheduling should be able to adjust night plans based
on changing atmospheric conditions. It should allow observatory users to re-arrange observed objects so the
observations they would like to get done while sleeping would be done in proper order.

Mid-size and large ground based observatories usually serve various user groups with various scheduling
needs. Software which enables users to observe a single star for most of the night might be ideal for exoplanet
researchers, but does not fit the needs of supernova observers.

Scheduling of observing time is a major factor contributing to the success of any autonomous observatory.
Autonomous observatories with perfect scheduling succeed, whereas those without it fail. Multiple attempts were
made throughout history to solve this problem – for example, see Stella2 or Robonet3 scheduling. Most of these
rely on some kind of merit function, which evaluates target ”usability”. The scheduler always picks the target
with the highest merit function value. Brief introduction to merit function scheduling is provided in section 2.

Further author information: (Send correspondence to P.K.)
P.K.: E-mail: kubanek@fzu.cz, Telephone: +420 737 500 268; Project web site: http://rts2.org

http://rts2.org

Although various systems based on merit-function scheduling may offer a programmer a perfect plaything,
they are very difficult to explain to the investigators. Astronomers are not interested in hearing how they
can make their observations by adjusting knobs which influence merit function. They would like to have their
targets observed using a simple and elegant method to do so. That is where queues, used at most of the large
observatories4,5 come into action. Observers can place their targets into a queue and the queue is executed. For
detailed discussion of queue scheduling see section 3.

Both approaches have advantages and disadvantages. Those are discussed in section 4. The next section,
section 5, describes a design for a scheduling method that combines both approaches into a system satisfying
both human and computer driven observatories.

Section 8 describes the implementation of meta-queues scheduling in the RTS2 system. The article con-
cludes with a discussion of results obtained with meta-queues scheduling running on the Fred Lawrence Whipple
Observatory (FLWO) 1.2m telescope.6

2. MERIT FUNCTION SCHEDULING

Merit function scheduling uses a function to calculate each target’s immediate benefit for an observing program.
The merit of an observation can be difficult to estimate, and this is one of the major problems of merit-function
scheduling.

Let’s assume observers would like to observe a target which is at the moment closest to the zenith. Then the
merit function, meritf , is:

meritf(T, JD, observer) = altitude(T, JD, observer)

where:

T is a target

JD is the current Julian date

observer is the observer position (longitude and latitude)

altitude(T, JD, observer) is a function returning a target’s T altitude as seen from the site on Earth at the
observer’s coordinates at date JD

Merit functions are adapted to the needs of the individual observatories. Various terms and parameters can
be added so the resulting schedule would match observer’s wishes. The current RTS2 merit function is:

meritf(T, JD, observer, ha, Ld, lo, ldo) = priority(T) + bonus(T)

+altitude(T, JD, observer) ∗ 2

+log((180− ha)/15.0)⇔ (ha < 165) + log((ha− 180)/15.0)⇔ (ha > 195)

−log(61− Ld)⇔ (Ld < 60)− log(lo/3600) ∗ 50⇔ (lo > 3600 ∧ lo < (3 ∗ 3600)

−log(3) ∗ 50⇔ (lo < 86400)− sin(ldo ∗ π/4) ∗ 5

Where, in addition to parameters described above and common mathematical symbols (log, sin and π):

priority(T) is the current target T priority

bonus(T) is the current target T bonus

ha is the hour angle for target T as observed from the site on Earth at the observer’s coordinates at date JD

Ld is the target lunar distance in degrees

lo is the difference in seconds between the current time (JD) and the last observation time for the target

ldo is the number of target T observations in 24 hours preceding date JD

⇔ is the logical iff expression. The value on the right will be used only if conditions on the left are satisfied.
For example, log((180− ha)/15.0)⇔ (ha < 165) evaluates to 0 if ha >= 165

There are other possible implementations of merit functions. The expression can include the current site
seeing, moon phase, number of good images of the target or time left until the end of period during which the
target can be observed. Expressions can include target-dependent multiplication factors, or weights. Thus, some
targets may be configured with a high relative weight on one expression, while others can decide to ignore this
expression.

Given a merit function, the algorithm for target selection is simple. It finds the target with maximum value
of the merit function for given instant of all targets, and selects this target as the one to be observed.

Various methods can be used to optimise merit function scheduling. For example, the RTS2 merit function
meritf uses an expression parametrised with lo to force the selection of unobserved targets for observation.
Besides this, the target properties can be set so the target will be removed from the set of targets evaluated for
autonomous selection as soon as it is observed - either indefinitely∗ or for a given time†.

The more complex the merit function becomes, the more complex it is to evaluate which targets will be
selected and how the function will behave in the future. One can add multiple functions to the expression,
but all those will just turn the selector behaviour even more obscure. The next paragraph discusses how the
scheduling can be simplified by allowing multiple criteria to be considered.

2.1 Multiple objective global optimisation

As it was illustrated in the previous example, merit functions can become quite complex. This is partly due to
the need to weight different factors leading to a single number representing a target’s merit. As scheduling is in
the NP-hard7 class of problems, finding the best solution requires traversal of the full solution space – with a size
that is exponential to the size of input target set. So the usual merit function implementations are short-sighted
- only a handful of the successive targets can be considered. It is then hard to create a night plan using just
a merit function. If a night plan must be created, some heuristic is usually adopted – for example targets are
ordered in west–east direction, as targets near the west horizon should be observed as early as possible before
they set, and targets to the east later in the night as Earth rotation places them closer to zenith.

Various strategies can be employed to simplify complex merit functions. Some expressions can be written as
constraints, requiring targets to match certain conditions to be included in the target set considered for selection.
One of a very good example of such constraint can be zenith distance limit – targets below pointing limits of the
telescope shall not be considered for merit function evaluation.

The Master’s thesis ”Genetic Algorithm for Robotic Telescope Scheduling”8 discusses design and implemen-
tation of a multiple objectives scheduling algorithm which uses Non-dominated Sorting Genetic Algorithm II
(NSGA II).9 This algorithm works by optimising a global observing schedule with NSGA II. Instead of relying
on a single merit function, the algorithm works with multiple functions and tries to optimise all of them. This
approach further reduces the complexity of the scheduling.

The genetic algorithm is inspired by natural selection process. The GA scheduling works by representing
possible schedules as chromosomes. When algorithm starts, various possible schedules are generated for popula-
tion zero. During virtual evolution, the chromosomes are crossed, mutated and repaired. The best are selected to
form next generation. Instead of exploring full solution space, genetic algorithm explores only a small fraction
of it. This allows it to effectively search solution for NP-hard, exponential size problems.

∗targetdisable script command
†tempdisable script command

NSGA II scheduling can provide multiple possible schedules for the night. An experienced observer can
then choose the one which best matches the expectations. This approach was recently chosen by CFHT for
implementing the intelligent scheduler running on top of their queue system.10

While NSGA II optimisation looks promising, its inputs are difficult to explain to the observers. Experienced
observers prefer to simply provide a list of targets they would like to observe, combine it with targets proposed
by other observers and let that schedule run. Queue scheduling, discussed in the next chapter, is much better
for direct interaction of investigators with the scheduling.

3. QUEUE SCHEDULING

”In computer science, a queue is a particular kind of abstract data type or collection in which the entities in the
collection are kept in order and the principal (or only) operations on the collection are the addition of entities
to the rear terminal position and removal of entities from the front terminal position. This makes the queue a
First-In-First-Out (FIFO) data structure. In a FIFO data structure, the first element added to the queue will
be the first one to be removed. This is equivalent to the requirement that once an element is added, all elements
that were added before have to be removed before the new element can be invoked. A queue is an example of a
linear data structure.”11

Scheduling queue entities are targets which should be observed. When the next target should be observed, it
is removed from the top of the queue. Targets are usually added to the end of the queue, but it is reasonable to
assume that observers may like to change the order of the queue targets. It is better to think about a scheduling
queue in a different manner than in the definition given above. The scheduling queue can be for our purposes
defined as an ordered set, with the following operations: remove top entity, insert entity to arbitrary position,
change set order, delete an entity, repeat as needed.

Queue scheduling can be depicted on a computer screen in a diagram, showing rectangles representing targets
on the time axis (as can be seen in figure 1). Queue scheduling is mainly used in service mode observing at large
observatories. Service mode means that the observations are done by observatory staff on behalf of investigators
requesting the observation, who are not present during the observation. Trained observers spend each night at
the telescope and work off a list of targets to observe together with required instrument setup. The targets
are put into a queue, from which the observatory control system picks a target, sets up instruments for its
observations, and commands exposures as required by the scheduling entry. The observer then just monitors the
system and troubleshoots any problems.

4. ADVANTAGES AND DISADVANTAGES OF CLASSICAL SCHEDULING

Following table compares queue and merit function scheduling. As it was discussed in previous chapters, the
main difference is that merit function scheduling is good for autonomous observatories, while queues are good
for trained observers.

Table 1. Comparison of queue and merit function scheduling

Feature Merit function Queues

Investigator
friendly

bad, as concept of merit functions is hard to
explain and understand

moderate, queue combined with graphical user
interfaces are relatively simple to explain

Flexibility good, as merit function can be quickly recal-
culated with different input (seeing,..) param-
eters

bad, as it requires significant user interaction
with the system

Automatic
interrup-
tions, ToOs

yes, new merit function can be calculated for
next observation after ToO

yes, but can destroy end of the queue (targets
becoming unobservable due to setting below
pointing limits,..)

Autonomous
operation

excellent, as merit function is a simple algo-
rithm which can be robustly programmed

bad, queue requires human interaction – in-
vestigators must fill the queue

5. COMBINING QUEUE AND MERIT FUNCTION SCHEDULING

Merit function scheduling excels where queue scheduling fails and vice versa. Given this, the idea to integrate
both scheduling approaches into a common framework seems very promising.

What if the queue system is to be used for obtaining user-requested observations, while merit function
scheduling is to be used when there are no entries in the queue system to obtain service-type observations of
targets? This is a pseudocode representation of such an approach:

while (canObserve ())

{

if (queueNotEmpty ())

t = selectFromQueue ();

else

t = selectFromMeritFunction ();

observe (t);

}

While this approach will work, it will not address the inflexibility of queue scheduling. There is a selection
coming from a single queue, which in its raw base algorithm allows just for the top target to be removed by the
selectFromQueue procedure. So either the system will pick a target from the queue if the queue is not empty,
or it will select a target using merit function evaluation.

To resolve this, one can slightly modify a queue selection algorithm in the selectFromQueue method. The
modified algorithm should select a target only if the target should be observed. There can be multiple criteria
for when the target should be observed – starting with a flag indicating whether the queue scheduling is enabled
at all, including the visibility of the target and checking whether the target meets additional constraints, such
as a particular time during which it should be observed.

Given that there is an algorithm for a single queue with the properties given above, it is trivial to extend the
system to multiple queues. The scheduling algorithm loops over all queues, requesting the next target from each
queue. If a target is found, the loop terminates and the target is observed. If queue scheduling cannot find a
target to observe, then merit function scheduling is asked to provide one. A pseudo-code representation of such
an algorithm is:

while (canObserve ()) {

for (q in queues) {

t = selectFromQueue (q);

if (t)

break;

}

if not (t) {

t = selectFromMeritFunction ();

if not(t) {

debug ("cannot find target for observation. 30 sec sleep");

sleep (30);

continue;

}

}

observe (t);

}

This approach allows investigators to put their targets into their queue. Either a night observer or an
autonomous system can then disable or enable queues, based on predefined constraints. Using such an approach,
queues become flexible, allowing for simple change of the path the scheduling will take during the night.

We will call the structure holding multiple queues with special characteristics meta-queues. Use of meta-
queues for scheduling is discussed in the next section.

6. META-QUEUES SCHEDULING

As discussed in section 3, the designation ”queue scheduling” is somewhat misleading and might be renamed to
”scheduling from an ordered set of targets.”

RTS2 queues become even more complex than the ordered set. First, as discussed in the previous section,
there are multiple queues – hence the plural in the name.

Second, a queue has an associated queue type. The queue type can change how each queue is ordered and
what happens during and after a target is selected from the queue. For details please see discussion in section
6.1.

Third, the queue member is a structure, containing a pointer to the target and optional start and end times
of required target observations. With this extra information, a member of the queue can be removed if its end
time expires. A queue may also be put on hold when the start time of target on the top position is in the future.

The algorithm for selection from the queues can be written in a pseudo-code as:

proc selectFromQueue (q, &maxDuration) {

filterExpired (q);

filterUnobservable (q);

proposed = selectNext (q, now, maxDuration);

if (proposed) {

markSelected (q);

return proposed;

}

if (startTime (q) - now < maxDuration)

maxDuration = startTime (q) - now

}

filterExpired removes from the queue all targets with end time in the past. This guarantees that the requests
with target time expired will not be scheduled. It also removes targets which are in the queue before a target
with start time in the past. This guarantees that if there is a target in the queue which should be observed now,
it will be observed at the expense of targets ahead of it. This is important to allow for time-critical observations
to start at a required user-specified time, even if the queue execution was delayed, for example by inclement
weather.

filterUnobservable removes from the top of the queue targets which cannot be observed at the moment.
Based on the queue parameters, those targets are either moved after the first target in the queue which can be
observed at a given moment, or completely removed from the queue. This guarantees that the queue will not
become blocked by the targets entered into the queue which due to any delay set before they can be observed.

selectNext returns the queue top target if and only if the queue top target start time is either not specified
or in the past.

startTime returns the expected start time of the top target from the queue, or not-a-number if there is no
start time attached to the top target. now is the current time.

maxDuration is used to constrain the maximal duration of execution of the selected target. If the expected
execution duration of a target extends past the available time, the target is not considered for selection. max-
Duration is set by a procedure that calculates the time available until dawn, and updated if it is lower than
the start time of the first observation from the queue. The queue system guarantees that if there is a queue with
the target which observations should be started later, targets from queues considered after this queue will finish
before the given queue start time is reached.

6.1 Meta-queues Ordering and Selection Algorithms

Meta-queues can be configured to order and select targets in a different fashion to the standard first-in-first-out
(FIFO) algorithm. The available variations are:

CIRCULAR similar to FIFO, but places selected targets at the end of the target queue. In this way, queues
can be configured to continuously observe a set of targets throughout the night.

HIGHEST order targets by altitude.

WEST–EAST order targets from west to east. This allows for targets on the west to be observed first.

WEST–EAST–MERIDIAN order targets west of the meridian by priority and east from meridian the same
way as the WEST–EAST queue. This is to allow for high priority targets west of the meridian, meaning
those targets that are currently setting, so the highest priority targets will be observed first.

OUT–OF–LIMITS order targets by remaining time until they set below observing constraints.

A user or program can change the queue type anytime. For example, one can change a queue from FIFO to
WEST–EAST–MERIDIAN if bad weather is approaching. This allows for targets with the highest priority,
which are setting, to be observed first.

Circular queue can be used to monitor multiple targets throughout a night. Assume we have targets A,B,C,
which should vary on time scales long enough to allow for some gaps between target visits. Assuming A, B and
C are visible, the scheduler will repeat sequence A,B,C. Targets that are not visible will be skipped.

6.2 Target of opportunity interruptions

While the previous section deals with making the queues flexible, it does not describe how this flexibility can be
used for target of opportunity observations.

Targets of opportunity can be introduced into the RTS2 target database with custom clients, which are
available for GCN12 and Pierre-Auger high energy showers. The current procedure is to call the ”now” command
of the executor to immediately execute visible targets of opportunity, and raise the target priority so that the
merit function will pick the target for the next observations. While the ”now” part worked without problems
and there is no need to change it, the follow-up planning with the merit function was difficult.

The preferred approach with the queue scheduling for the follow-up observations is to put targets of oppor-
tunity into a special queue. This queue can be disabled if the observers do not want to interrupt their observing
plan. The target script can add targets to any queue if more observations are desired.

7. PLANNING OF THE NIGHT WITH META-QUEUES SCHEDULING

Observers can interact with the scheduling subsystem either through a graphical user interface, or from a com-
mand line. Targets must be entered into the database before they are scheduled with various target management
tools that RTS2 provides. Users can append targets into a queue, move targets to an arbitrary position, remove
targets from the queue or clear the queue.

The scheduling subsystem includes a scheduling simulator. The simulator uses queue entries to produce a
simulated night run, showing which targets will be executed during the night‡. The simulator can be used by
users to confirm that the entries they insert in the queues will be executed as desired.

Different queues can be populated by different users. For example, occultation targets requiring execution
at a given time can be put into one queue, and supernova follow-up targets into another. Observers, if awake
during the night, can monitor the night run and disable the queue if conditions do not allow target observations.

‡assuming ideal run conditions – i.e., a night without any interruptions caused by bad weather or instrument failure

Queue Target Start date and time End date and time Script duration

transit TR 1 29th December 2012, 21:30 29th December 2012, 23:00 1m

(FIFO) TR 2 30th December 2012, 23:30 31st December 2012, 09:00 2m

TR 3 31st December 2012, 23:00 1m
service SN A

50m

(FIFO) SN B
....
SN M

SN N 1st January 2013, 00:20

Blazar A 1st January 2013, 02:30
Blazar B
Blazar C

backup B 1
20m(circular) B 2

B 3
Table 2. Example schedule combining transits, service and backup observations

Transit queue targets will not be remove before they end time, as the queue is marked as Keep observed.
Service queue target will be considered only if there aren’t targets in transit queue, backup queue targets only

if there aren’t targets in transit and service queues.

7.1 Example schedule

Let’s assume an investigator would like to observe three transits, named TR 1, TR 2 and TR 3. The transits
must be observed on nights from 29th December 2012 to 1st January 2013.

And let’s assume another investigator would like to observe supernovae named SN A, SN B through SN N,
and Blazar A through Blazar C. SN A through SN M can be observed anytime, but SN N observations must
start nearest 1st January 2013 at 00:20. If any of SN A through SN M are not observed before SN N, they should
be removed from the schedule. Similarly, Blazar A observations must start nearest 1st January 2013 at 02:30.

On top of that, there is ”backup” queue containing targets to be observed while there is nothing else to do.
This queue is of CIRCULAR type.

Table 2 shows the queue setup for such observations. Table 3 shows how those queues can turn into observa-
tions with a period of inclement weather. Figure 1 depict how the queues user interface would present an user
with the queues setup.

8. 1.2M FLWO TELESCOPE IMPLEMENTATION

Of the telescopes which uses RTS2, the 1.2m FLWO telescope is a primary user of queue scheduling. The telescope
is a special case: due to the complexity and availability of the existing observatory control system, with which
both local and remote observers are well familiarised, RTS2 is used only for autonomous control – scheduling,
preparation and execution of the observation scripts, weather monitoring and accounting of the autonomous
observations. RTS2 does not have direct control of the hardware. It communicates with the hardware through
the FLWO Telshell, a modified tcsh§. This architecture is depicted on figure 2.

The scheduler running as rts2-selector of the RTS2 continuously evaluates queues and merit functions and
produces as a single output the next target which should be observed. The target number is retrieved through
a JSON13 interface by a script running inside Telshell. The script retrieves instructions for instrument setups
as an XML file from the database, and translates this XML file into the script for the observation. Then the
observation script is sourced.

The RTS2 processes run as daemons in the background. The scripts running in the Telshell query the weather
state and readiness of the system, and take appropriate action if bad weather is detected. If an investigator would

§the modification allows control of the hardware through special shell commands

Description Start date and time End date and time

day 29th December 2012, 18:16

SN A 29th December 2012, 18:16 19:06
SN B 19:06 19:56
SN C 19:56 20:46
B 1 (as SN D is too long) 20:46 21:06
B 2 21:06 21:26
merit scheduling or idle 21:26 21:30
TR 1 21:30 23:00
SN E (SN D is not visible) 23:00 23:50

SN F (SN D is not visible) 23:50 30th December 2012, 00:20

bad weather – idle 30th December 2012, 00:20 04:23
SN D 04:23 05:13
SN G 05:13 06:03
B 3 (to fill time) 06:03 06:23
merit scheduling or idle 06:23 06:34

(day) 06:34 18:17

bad weather 18:17 20:34
SN H 20:34 21:24
SN I 21:24 21:26
remote session 21:26 23:06
B 1 23:06 23:26
merit scheduling or idle 23:26 23:30

TR 2 23:30 31th December 2012, 01:30

observer disables transit and service queues due to inclement weather 01:28

B 2 31th December 2012, 01:30 01:50
B 3 01:50 02:10
B 1 02:10 02:15
bad weather 02:15 04:35

observer enables service queue 04:25

SN J 04:35 05:25

observer enables transit queue 05:15

TR 2 05:25 06:34

(day) 06:34 18:17

TR 3 18:17 23:00
SN K 23:00 23:50

B 2 23:50 1st January 2013, 00:10

merit scheduling or idle 1st January 2013, 00:10 00:20
SN N SN L and SN M are removed from the queue 00:20 01:10
B 3 01:10 01:30
B 1 01:30 01:50
B 2 01:50 02:10
B 3 02:10 02:30
Blazar A 02:30 03:20
Blazar B 03:20 04:10
Blazar C 04:10 05:00
B 1 05:00 05:20
B 2 05:20 05:40
B 3 05:40 06:00
B 1 06:00 06:20
merit schedule or idle 06:20 06:34

(day) 06:34

Table 3. Simulation of observations resulted from the example schedule described in table 2.

This table shows important events happening between 29th December 2012 and 1st January 2013. This is assuming the
SN and Blazar target observations take their allotted time. In a real run, the time will differ as targets will use different

scripts and due to the different distances the telescope has to slew between targets.

Figure 1. Queue GUI

User scheduling interface showing queues setup from the example described in section 7.1. On image top are
windows showing queues available at the system and current selection from the queues. Right is simulation
showing how the system thinks the observations will be executed. At middle of the image are shown service
queue filled with supernova observations, transit queue demonstrating how user can enter queue times, and
backup queue with CIRCULAR queue ordering. Windows showing observing logs of a target and altitude

plot of another target are visible on image bottom.

DB

TelShell

rts2-selector

rts2-imgproc

Filter wheel

rts2-xmlrcd

GUI

CLI

Remote
access

GORobot
script

runobs
script

CupolaTelescope

CCDAutoguider

Figure 2. Integration of FLWO 1.2m telescope TelShell with RTS2

Telshell controls observatory hardware through various interfaces. It provides commands to access the
hardware. Database stores targets data and robot observations logs. rts2-selector, rts2-imgproc and

rts2-xmlrpcd are RTS2 processes responsible for scheduling, image processing and JSON access to the RTS2
environment. Graphical user interface (GUI) and command line interface (CLI) interacts with rts2-xmlrpcd to

access and change robot parameters. Remote access is possible by stopping GORobot script and typing
commands directly in TelShell.

like to take over and observe using commands typed into Telshell, she can interrupt the robot script and take
over. Once the investigator is done with manual control, she can switch observations back to RTS2 by running
GOrobot command.

An example of a complete flow of commands needed for construction of the script and their outputs (which
are used as inputs for the next command) is summarised in table 4. It should be noted that the target script
command is automatically repeated if the current target is proposed by scheduler as the next target. Commands
such as turning on/off the autoguider are ignored if the state is equal to the commanded state. The system loses
about 0.2 seconds between consecutive exposures of the same target coming from different script execution.

Command Output, comments
rts2-json -G SEL.next id 1000 - identification of the next target

rts2-targetinfo –parse KCAM
1000

<script device=’KCAM’>

<set device=’KCAM’ value=’ampcen’ op=’=’ operands=’2’/>

<set device=’KCAM’ value=’autoguide’ op=’=’ operands=’ON’/>

<tempdisable>1800</tempdisable>

<set device=’KCAM’ value=’filter’ op=’=’ operands=’i’/>

<exposure length=’80’/>

</script>

xsltproc flwo.xsl -

... script head skipped, only an example is given

if ($? == 0 && $in == 1) then

rm -f $lasttarget

set continue=0

rts2-logcom "Interrupting target $name ($tar_id)"

endif

ccd gowait $exposure

...

Table 4. Commands used for the 1.2m FLWO telescope scheduling system

9. RESULTS

The FLWO robot project was started during fall 2010. Table 5 shows 1.2m FLWO telescope statistics from late
2010 when the robot project was first tested on the telescope up to the end of May 2012.

In the statistics table, the column marked ”Nights” shows the number of nights the robot was active. ”Sky
time” is the sum of exposure times of all images acquired by the robot at the given month. Observ. is the
number of robot observations, images the number of images acquired by the robot.

Nights and total time are numbers of nights and observing time extracted from the 1.2m logs. As those are
filled by observers and don’t account for dead time lost by telescopes slews and detector readout, it is expected
the ”Total nights” will never equal ”Sky time”. Depending on the lengths of exposures performed during the
night, ”total time” can include from 10% to 50% or even more dead time. As an extreme, dead time can be
140% for 10 second exposures – as the detector readout time is 14 seconds.

Nights is the percentage of nights the robot was used at least for part of each night. Time is the fraction of
sum of sky time, number of observations multiplied by 90 and number of images multiplied by 14 divided by the
total time. The expected median slew time is the 90 seconds and 14 seconds is the budget for detector readout.

Although time share cannot be precisely determined, as the current system does not allow to differentiate
between images taken by the robot and human observers and there are no statistics of the images and observations

performed by the local or remote observers, there is a clear trend of increased use of the robot for observations
from late 2011. This is correlated with improvements of the autoguider, scheduling user interfaces and familiarity
of the investigators with the queue scheduling.

Month Robot Observer’s log Robot share
Nights Sky time Observ. Images Nights Total time Nights Time

10/2010 4 4:23:10 17 58 28 195:30:00 14.3% 2.6%
11/2010 3 3:02:00 12 46 30 248:45:00 10.0% 1.4%
12/2010 4 19:56:30 44 247 28 219:30:00 14.3% 10.0%
01/2011 6 24:19:40 84 293 30 311:30:00 20.0% 8.8%
02/2011 4 12:29:31 47 179 26 224:00:00 15.4% 6.4%
03/2011 5 27:35:00 78 383 29 289:05:00 17.2% 10.7%
04/2011 4 11:32:38 80 215 29 247:45:00 13.8% 5.8%
05/2011 5 26:21:37 99 419 29 220:00:00 17.2% 13.8%
06/2011 1 2:42:00 11 36 29 214:00:00 3.4% 1.5%
07/2011 - - - - 22 98:15:00 - -
08/2011 - - - - 1 8:00:00 - -
09/2011 8 20:58:31 95 589 23 127:54:00 34.8% 20.0%
10/2011 16 80:16:42 306 2187 31 262:00:00 51.6% 36.8%
11/2011 11 57:53:07 215 2254 26 202:48:00 42.3% 35.5%
12/2011 19 99:42:55 430 4014 20 169:00:00 95.0% 74.6%
01/2012 25 114:05:29 416 5533 25 257:40:00 100.0% 56.7%
02/2012 22 97:46:28 449 3100 23 214:00:00 95.7% 56.6%
03/2012 18 94:58:26 362 4674 26 234:00:00 69.2% 52.2%
04/2012 29 153:58:31 579 7679 31 244:00:00 93.5% 81.3%
05/2012 31 157:40:38 571 6134 31 236:55:00 100.0% 82.6%

Table 5. FLWO 1.2m Robot statistics November 2010 - May 2012

Statistics of the autonomous observations of the 1.2m FLWO telescope. Nights, Sky time and number of
observations and images are extracted from the robot database. Nights and Total time are counted from

observing logs. Robot shares are computed as the percentage of nights and time the robot was active from the
nights recorded in the observers’ logs. To adjust for CCD readout and telescope slew, an estimated dead time

is added to the sky time before the fraction of total time is calculated.

10. CONCLUSIONS

The article presented two basic approaches for the scheduling of observations – queue and merit function schedul-
ing. It shows how the two can be combined into ”meta-queue” scheduling, which allows observers to easy schedule
their targets. Use of the described design for scheduling of the actual observatories demonstrates the system
performs well. It also demonstrates how manually controlled observations can co-exist with autonomous either
pre-programmed or dynamic observing schedules.

Further work is needed, particularly on the user interface and presentation of the collected statistics. As the
system stores all data in the database, we are confident the extensions will be possible and allow us to better
understand how the system behaves and what should be improved for it to work even better.

ACKNOWLEDGMENTS

We would like to acknowledge support from the FLWO staff and patience of the first users who had to find the
initial bugs in the system. This research was funded by SAO grants. PK and MP would like to acknowledge
grant ME09052 of program KONTAKT of the Ministry of Education, Youth and Sports of the Czech Republic
and EU grant project GLORIA No. 283783 (FP7-Capacities). The design of the scheduling mode we presented
here was inspired and influenced by the authors’ familiarity with scheduling at other observatories. As it would

be difficult to provide a full list of those observatories, we would like to particularly mention inspiration from
Gemini for multiple queues system and STELLA for merit function scheduling.

REFERENCES

[1] Johnston, M. D. and Miller, G. E., “Spike: Intelligent scheduling of hubble space telescope observations,”
in [Intelligent Scheduling], 391–422, Morgan Kaufmann Publishers (1994).

[2] Granzer, T., Weber, M., and Strassmeier, K. G., “Three Years of Experience with the STELLA Robotic
Observatory,” Advances in Astronomy 2010 (2010).

[3] Fraser, S. N., “Scheduling for Robonet-1 homogenous telescope network,” Astronomische Nachrichten 327,
779 (Sept. 2006).

[4] Puxley, P. and Jørgensen, I., “Five years of queue observing at the Gemini telescopes,” in [Society of Photo-
Optical Instrumentation Engineers (SPIE) Conference Series], Society of Photo-Optical Instrumentation
Engineers (SPIE) Conference Series 6270 (July 2006).

[5] Chavan, A. M., Giannone, G., Silva, D., Krueger, T., and Miller, G., “Nightly Scheduling of ESO’s Very
Large Telescope,” in [Astronomical Data Analysis Software and Systems VII], Albrecht, R., Hook, R. N.,
and Bushouse, H. A., eds., Astronomical Society of the Pacific Conference Series 145, 255 (1998).

[6] “Flwo 1.2m telescope.” http://www.sao.arizona.edu/FLWO/48/48.html.

[7] “Np–hard.” http://en.wikipedia.org/wiki/NP-hard.

[8] Kubánek, P., “Genetic algorithm for robotic telescope scheduling,” Master en Soft Computing y Sistemas
Inteligentes , Universidad de Granada, Granada, Spain (2008).

[9] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T., “A fast and elitist multiobjective genetic algorithm:
Nsga-ii,” IEEE Transactions on Evolutionary Computation 6, 182–197 (2002).

[10] Mahoney, W. and Veillet, C., “The use of a genetic algorithm for ground-based telescope observation
scheduling,” in [Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series], Society of
Photo-Optical Instrumentation Engineers (SPIE) Conference Series 8448 (in press).

[11] “Queue.” http://en.wikipedia.org/wiki/Queue_(data_structure).

[12] Barthelmy, S. D., “GRB Coordinates Network (GCN): A Status Report,” American Astronomical Society
Meeting Abstracts 202 (May 2003).

[13] “Json - java script object notation.” http://www.json.org.

http://www.sao.arizona.edu/FLWO/48/48.html
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Queue_(data_structure)
http://www.json.org

	Introduction
	Merit function scheduling
	Multiple objective global optimisation

	Queue scheduling
	Advantages and disadvantages of classical scheduling
	Combining queue and merit function scheduling
	Meta-queues scheduling
	Meta-queues Ordering and Selection Algorithms
	Target of opportunity interruptions

	Planning of the night with meta-queues scheduling
	Example schedule

	1.2m FLWO telescope implementation
	Results
	Conclusions

