

GRBs in the Era of Rapid Follow-up

Astrophysics Research Institute Liverpool John Moores University

Collaborators

- Liverpool John Moores University GRB team:
 - Andrea Melandri
 - Shiho Kobayashi
 - David Bersier
 - Iain Steele
 - Chris Mottram
 - Neil Clay
 - Robert Smith
 - Zach Cano
- External members:
 - Cristiano Guidorzi (INAF/Ferrara)
 - Andreja Gomboc (Uni. Ljubljana)
 - Alessandro Monfardini (CNRS-Grenoble)

Motivation

- Origin of Gamma Ray Bursts
 - core-collapse of massive stars
 - neutron star or neutron star black hole mergers
- Access to regions of extreme physics
 - High Lorentz factors (>1000)
 - Strong gravity
 - Large magnetic fields
 - Fundamental physics
- Detectable to high redshift
- Short timescales need real-time observing
- Observationally and theoretically challenging

Afterglows and Jets

- Anisotropic emission (beaming) invoked
- Achromatic break in afterglow light curve
 - Jet 'break' $F_v \propto t^{\alpha}$; α steepens by $\Delta \alpha \sim 1$
 - For θ_j , jet radiates into $f_b = (1 \cos \theta_j) \sim \theta_j^2/2$
 - Break at t_j when $\Gamma < 1/\theta_j$; on seeing edge of jet

(e.g. Band et al. 2003; Klose et al. 2004)

Pre-Swift Rapid optical response in 1997 ~10 hours post GRB

Ubiquitous Jets & Hindsight

- Zoo of quasars different observed properties explained by observer's perspective
 - Blazar ⇒ quasar ⇒ radio galaxy
 - Jet viewed head-on or side-on
 - Central engine driven by supermassive black hole

- Zoo of GRBs different observed properties explained by observer's perspective?
 - GRB ⇒ X-ray Rich GRB ⇒ X-ray Flash
 - Central engine driven by stellar-mass black hole

Standard Engine?

- Relativistic beaming + physical collimation?
- Opening angles ~few degrees
- Collimation-corrected E ~ 10⁵¹ erg
- Account for kinetic & non-EM?
 - Standard energy reservoir for long GRBs?
- If we can understand physics
 - Use as standard(izable) candles
 - Cosmological tools to high z environment
 - SF tracer?

e.g. Frail et al. 2001; Ghirlanda et al. 2004

New Era of Rapid Followup

- Dedicated GRB satellite: SWIFT
 - Burst Alert Telescope (BAT): 15-150 keV
 - X Ray Telescope (XRT): 0.3-10 keV
 - Ultraviolet Optical Telescope (UVOT): 150-650 nm
- Real-time GRB sky map at: <u>http://grb.sonoma.edu/</u>

Large Robotic Telescopes

- Liverpool and Faulkes telescopes: world's largest (2-m) fully robotic optical telescopes (http://telescope.livjm.ac.uk/)
 - Fully-open enclosure (no dome seeing and fast slew), robotic operation, large aperture, comprehensive instrumentation
- Observations coordinated with other facilities, both ground-based and from space
- Condition-dependent observations
- Intelligent dispatch scheduler (not queue scheduled)
- Liverpool Telescope is not in Liverpool !

Liverpool Telescope Construction (4 March 2002 - 20 Oct 2003)

Telescope Specifications

- Primary mirror diameter 2m
- Final focal ratio f/10
- Altitude-Azimuth design
- Image quality < 0.4" on axis
- Pointing < 2arcsec rms
- Rapid slew rate > 2º/sec
- Fully open enclosure
- Five instrument ports (4 folded and one straight- through) selected by deployable, rotating mirror in the A&G Box within 30 s
- Robotic (unmanned) operation with intelligent automated scheduler
- General user facility not dedicated GRB telescope

Instruments & Science Goals

Optical Camera (LT/FTN/FTS) ~5' FOV	 Early multicolour light curves Shock physics/ISM Later-time light curves/Jet breaks GRB-Supernova connection
RINGO Polarimeter (LT only) ~5' FOV	 Early-time polarisation studies 1% polarisation at r' > 15 mag Fundamental tests of jet models
SupIRcam Infrared Camera (LT only) ~1' FOV	 High z 'naked' bursts vs Low-z 'obscured' bursts
Spectrograph (FRODOSpec) (LT - April 09)	 Early time evolution of circumburst medium
STILT (LT- 2009/10) (FOV 1º/20º) RINGO2 (LT - 2010) IO (LT- 2011) (FOV 2º)	 Bright bursts/neutrino counterparts Polarisation to 17th mag Deep simultaneous optical/IR

GRB Robotic Followup

- Optimisation for GRB science goals:
 - Automatic response (over-ride), data analysis & interpretation strategy
 - No human intervention from receipt of alert → observations → automatic object ID → choice and execution of subsequent observations

LT-TRAP ('Transient Rapid Analysis Pipeline')

- Sophisticated I.D. & decision making algorithm
- Over-ride mode starts on alert arrival
- Detection mode starts (n x 10s in r')
 - Astrometric fit, object extraction, cross-correlation with catalogues
 - Optical candidate?
 - Repeat for each image
 - Variability test (α>1)
 - Optical candidate I.D.?
 - Reports (16-bit) confidence level
- *Auto-ID* to R~19 mag in ~20s
- Subsequent strategy optimised and executed *automatically*
- GRB circular issued

Guidorzi et al. 2006, PASP ,118, 288

And it works ...

Date: Sun, 1 May 2005 22:16:30 -0400 From: Bacodine <vxw@capella.gsfc.nasa.gov> To: ag@astro.livjm.ac.uk, grb@astro.livjm.ac.uk Subject: GCN/INTEGRAL_POSITION

TITLE:	GCN/INTEGRAL NOTICE
NOTICE_DATE:	Mon 02 May 05 02:14:36 UT
NOTICE_TYPE:	INTEGRAL Wakeup
TRIGGER_NUM:	2484, Sub_Num: 0
GRB_RA:	202.4403d {+13h 29m 46s} (J2000),
	202.4982d {+13h 29m 60s} (current),
	201.8971d {+13h 27m 35s} (1950)
GRB_DEC:	+42.6722d {+42d 40' 20"} (J2000),
	+42.6448d {+42d 38' 41"} (current),
	+42.9301d {+42d 55' 48"} (1950)

Guidorzi et al. 2005, ApJ, 630, L121

Date: Mon, 2 May 2005 03:18:40 +0100
From: Engineer account <eng@astro.livjm.ac.uk>
To: ag@astro.livjm.ac.uk, am@astro.livjm.ac.uk, cgm@astro.livjm.ac.uk,
 cjm@astro.livjm.ac.uk, crg@astro.livjm.ac.uk, grb@astro.livjm.ac.uk,
 grbgroup@star.herts.ac.uk, grbgroup@star.le.ac.uk, ias@astro.livjm.ac.uk,
 ltops@astro.livjm.ac.uk, mfb@astro.livjm.ac.uk, mjb@astro.livjm.ac.uk,
 rjs@astro.livjm.ac.uk
Subject: GRB Alert : LT : OT CANDIDATE

I have completed detection mode. The best optical transient I could find has a position of 13:29:46.25 , +42:40:27.50 (J2000). Thats at (approximate) pixel position (760.260010,567.530029) on the detection mode images. It has a magnitude of 15.575000 (vs USNOB1) and counts 13166.900391. The astrometric fit has a residual of 0.160000 arc-seconds. The confidence level is 1.000000. I am confident that I have found an genuine OT. I am now changing to lt ot imaging mode.

•LT began observing <u>3.1 min</u> after GRB onset.

•Automatic I.D. within 1 minute (r'~15.8 & rapid fade)

- •Multi-colour imaging sequence **auto-triggered**
- •First early-time *multi-colour* light curve of afterglow.

Pre-Swift/Fermi Predictions

- Optical counterparts to most GRBs
- Many bright optical flashes at early time
- Smooth light curves jet breaks easy to spot
- High-energy spectral turnover
- High z GRBs easily identified
- Short bursts understood
- Look for new jobs....

Swift/Fermi Outcomes

- ~50% of GRBs remain optically dark
- Lack of bright reverse-shock optical flashes
- Complex light curves in all bands
- Band function to high energies
- First z=8.2 GRB identified only this year
- Short bursts still challenging
- Astronomers busier than ever...

GRB050724 - (Barthelmy et al. 2005) GRB 050904 (Cusumano et al. 2005)

Zhang et al 2006.

- Swift γ/X-ray light curves surprisingly complex.
 - 50 % with X-ray flares (late-time internal shocks Kocevski et al. 07)
 - Simple power law inadequate
- Long-lived central engine activity canonical?
- Common origin for prompt & afterglow emission?
- Internal vs external shocks?
- *Early-time* multi- λ observations key

Early-Time Light Curves

Optical Light Curves

Melandri et al. 2008, ApJ, 686, 1209

- Wide range of observed brightness
- Deep, fast observations vital
- Probe properties of ambient medium
- ~50% of optical afterglows remain undetected

Optical:X-ray Comparisons

Standard Fireball Model

- A : no break in optical or X-ray
 ⇒v_c above/between bands
- **B** : break in X-ray, not in optical $\Rightarrow v_{c}$ passes through X-ray band
- C: break in optical, not in X-ray
 ⇒ v_c passes through optical band
- D: break in optical & X-ray bands
 - \Rightarrow energy injection stops or jet break

X-ray + optical classification scheme

Melandri et al. 2008, ApJ, 686, 1209

Optical Flares: GRB 060206

Monfardini et al. 2006, ApJ, 648, 1126; (see also Wozniak et al. 2006, Stanek et al. 2006)

- Multiple bumps smooth broken power laws ۲
- High-z time dilation helps ۲

$$F_
u(t) = \sum_j F_j \cdot \sqrt[n]{rac{2}{(t/t_j)^{-lpha_{1_j}\cdot \ n} + (t/t_j)^{-lpha_{2_j}\cdot \ n}}}$$

- Rapid variability at t~440s (Δt_{rest} < 4s <<t) ongoing internal-engine activity ۲
- ۲
- Major rebrightening at t~3000s energy injection ($v_{opt} < v_c < v_X$) Optical break between 3 x 10⁴ s & 9 x 10⁴ s; not seen in X ray **not due to jet break** ٠
- Simultaneous optical /X-ray light curves vital to infer jet properties and GRB energetics

Optical Flares: GRB 080129

- GRB 080129: z = 4.349 (Greiner et al. 2009, ApJ, 693,1912)
- Later bump is emerging afterglow
- Flare unexplained
 - Rise too steep for reverse shock
 - Uncorrelated with γ rays
 - X-ray flare?
 - Residual shocks?
 - Hot spot in Poynting flux?
- Polarization prediction

Light-Curve Studies Deep Multi-Colour Photometry

- One of the brightest (R~10 mag): FTS/VLT/Magellan GRB 061007
- *Simple* light curves: t = 137 sec to 2 days

Mundell et al. 2007, ApJ, 660, 489

Bright, but no flash GRB 061007

- Bright γ, X, optical afterglow
- Reverse-shock optical flash ruled-out
- SED modelling:
 - β_{oxγ} =1.02+/-0.05,
 - A_v (rest)=0.48 (SMC profile)
- Microphysics explains lack of Swift optical flashes
 - Flash predicted in radio/IR at 137s
- E_{iso} = 10⁵⁴ erg
- Jet θ > 4.7° E γ > 3.4 x 10⁵¹ erg
- No jet break before 10⁶ s ⇒ spectral correlation outlier

Mundell et al. 2007, ApJ, 660, 489

Fireball Magnetization

- Standard (internal shock) synchrotron model
 - Baryon-dominated jet creates tangled B-field in shock layer
 - Prompt γ-ray variability (internal shocks)
 - Inefficient conversion of bulk:radiated energy
- Alternative: Poynting flow
 - Large-scale ordered magnetic fields advected outwards
 - Powerful acceleration and collimation
- Origin of magnetic fields unknown
 - Energy dissipation/deposition key for explosion energetics
 - Dissipation through magnetic reconnection?
 - Energy transfer details still unknown

Fireball Magnetization

Indirect diagnostics

- Bright optical flashes predicted from reverse shocks
- Bright forward shock emission only e.g. GRB 061007, 060418
- Typical synchrotron frequency below optical band (Mundell et al. 2007)
- Magnetized, but baryondominated fireball in few GRBs with optical reverse shock emission (GRB061126 - Gomboc et al. 2008, ApJ, 687, 443; Gomboc et al. 2009)
- Magnetic suppression of reverse shocks in others?

GRBs 990123, 021211, 060111B, 060117, 061126, 080319B (Gomboc et al. 2009)

Fireball Magnetization

Direct diagnostics

- Sychrotron emission → intrinsic polarization
- Significant γ-ray polarization (controversial P~ 0 or 70-80% GRB021206 - Coburn & Boggs 2003 vs Rutledge & Fox 2003/ Wigger et al. 2003)
- GRB 041219A prompt γ-ray 4%→ 43 ± 25% (Gotz et al. 2009)
- Fast-fading signal and spatially unresolved
- Model light curves ambiguous
- *Early-time* optical polarisation powerful

Early Polarisation Diagnostics

Energy per unit solid angle (log-scaled)

Polarisation fraction vs viewing angle for Γ = 10, 50 100 (isotropic expansion & power-law particle distribution)

Polarisation predictions; GRB 020813 data

Prompt emission predictions (one rules out internal shock model if >20% detected early)

RINGO Polarimeter

- Novel design (D. Clarke): rotating polaroid (500rpm) in telescope beam
- CCD field of view ~5 arcmin
- Variable signal for polarised sources
- Time variable signal → spatial signal by small angle wedge prism rotating with polaroid
- Signal recorded on CCD
- Each point source is a ring
- Polarisation signal mapped twice around ring
 - Correct for instrumental effects
 - Small variation: polarisation signal out of phase with instrument signal
 - Recover correct signal
- ~0.1% purity on 15 mag star
- First light on BD64106 (5% polarised)

GRB 060418

Earliest Polarimetry

- RINGO polarimetry of GRB 060418 at 203s
 - Nearly 100× earlier than anything measured previously
 - Rigorous checking of technique and calibration
 - Strongly-constrained upper-limit: P<0.08 (<8%)

- Strongly-magnetised jet precluded
- Current models pushed to the limit

Steele et al. 2006, SPIE, 6269 ,179; Mundell et al. 2007, Science, 315, 1822

Future Prospects

- GRB 090102 bright afterglow
- LT-RINGO measurement at ~150s
- Polarization detected
- Bright OTs rare
 - RINGO2 new design to detect R>17 mag
- Population statistics
 - Time evolution of % and PA
 - Redshift evolution
- Quantum physics tests

Capabilities & Open Issues

- Can probe extreme physics at early times
 - Automatic, well-sampled light curves from *seconds* to *weeks*
 - Lack of human intervention requires robustness at *all* stages
- New observations provide tight constraints on models
 - Jets widely accepted but complex and simple afterglow evolution challenging
 - Long-lived central engines required but not understood
 - Energy re-injection can explain anomalous light curves and dark bursts
- GRB standard internal shock model broadly works
- Detailed predictions from simulations now needed

Capabilities & Open Issues

- Magnetization remains fundamental open issue
 - Significant magnetization suggested by
 - Lack of bright optical flashes from reverse shocks
 - Lack of GeV detections
 - But alternatives remain valid
 - Low magnetization predicts flashes at lower energies (e.g. GRB061007)
 - Early-time polarimetry
 - Low optical polarisation precludes *strongly*-magnetised jet in GRB060418
 - Optical + γ-ray polarisation can revolutionise GRB studies
 - Population statistics and time evolution critical
- Detection of neutrinos/gravitational waves
 - Identification of electromagnetic counterparts feasible and important (e.g. IceCube + LT)
- Major breakthroughs ongoing watch this space.

