The OAdM robotic observatory

J.Colomé on behalf of the OAdM team

Workshop on Robotic Autonomous Observatories Málaga, May 18th 2009

Project overview

Institutions involved

- \Rightarrow IEEC (CSIC, UB, UPC)
- \Rightarrow Consorci Montsec, FJO

Project description

- \Rightarrow 0.8 m diameter telescope (OMI)
- $\Rightarrow CCD camera FLI: 2k x 2k Marconi chip,$ Back illuminated chip, FOV: 12.4 x 12.4 arcmin²
- \Rightarrow Photometric Filters: Johnson Cousins (UBVRI)
- \Rightarrow Operation: high confidence-level robotic operation

Timeline

- \Rightarrow Testing period (astronomers present)
- MILESTONE1: Supervised Robotic Operation → Period: May to July
- MILESTONE2: Unattended Robotic Operation → Period: August to December
- \Rightarrow Routine operations: Unattended Robotic Operation \rightarrow Starting: January 2010

Mapa Satèl·lit Hibrid Mapa Satèl·lit Hibrid Mapa Satèl·lit Hibrid Asia Asi

OAdM-TJO Robot Observatory

Poor initial installation

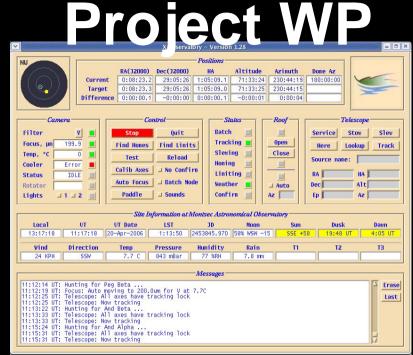
→ extensive efforts to reach working condition

Number of aspects improved and new features added

→ achievement of a reliable, secure and efficient robotic control

Main features

- \Rightarrow Designed and developed to achieve a high reliability operation
- ⇒ Control based on a distributed task scheme, using several computers: hardware operation, environment status check, general operation control, data management, image processing, data backup
- ⇒ Single Points of Failure and Redundancies, two critical subsystems: redundant control of dome shutter closing and environment monitor
- ⇒ Real time environment monitoring and HW reliability dealt with the appropriate equipment



WP 1000: Dome

- \Rightarrow Baader Planetarium Dome (\emptyset 6.15 m)
- \Rightarrow Redundant control of shutter closing

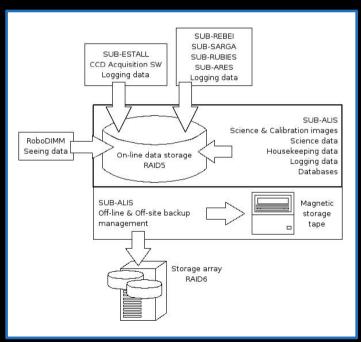
WP 2000: Telescope

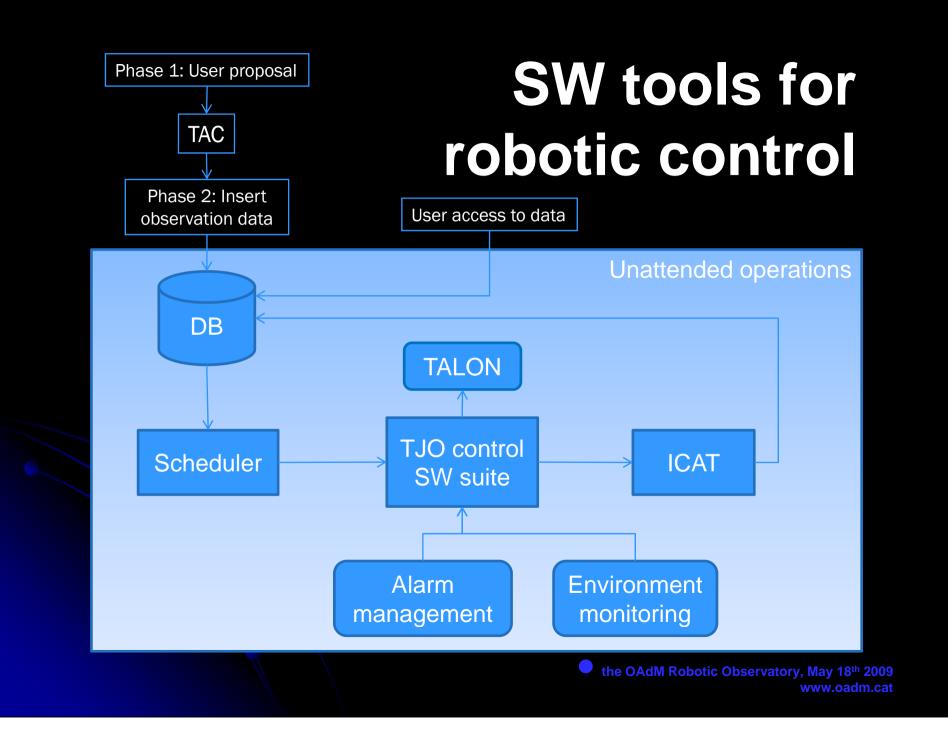
- \Rightarrow Equatorial fork mount
- \Rightarrow Cassegrain focus
- ⇒ Electronics setup for basic axis movement control (RA, DEC, FW,

mirror covers, Dome) based on a network of four standalone boards

WP 2100: Telescope control SW (TALON)

- SW under GNU license
- Based on daemon system and fifo internal communication programming and low level machine code for telescope electronics
- Automatic control of basic HW involved with the observation sequence
- New features developed: dome control, mirror covers, integration into observatory general control, etc.
 the OAdM Robotic Observatory, May 18th 2009 www.oadm.cat

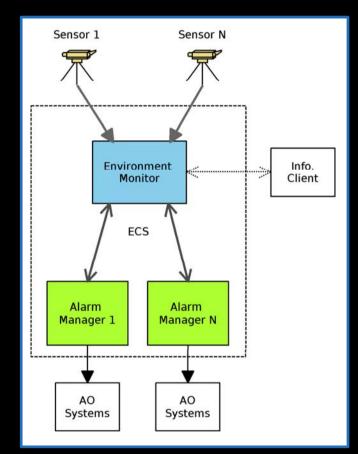

WP 3000: Housekeeping


- \Rightarrow Set of sensors to monitor all the environment variables
- \Rightarrow Mainly based on commercial devices
- \Rightarrow Tools to manage the data and the generated alarms
- ⇒ Power management and protections against induced current and perturbation of the communication signal: UPS, SW controlled switches, electric insulation components, fiber optics cables

WP 4000: Data storage and backup

- \Rightarrow Data storage policy design and system implementation:
 - Maximum data rate → 8 GB per day
 - On-site data storage: magnetic storage tapes (200 GB) and a Redundant Arrays of Independent Disks (RAID) 5 (276GB)
 - On-site management of the data repository:
 - On-line backup
 - Daily Off-line backup: copies on a magnetic tape
 - Off-site data storage: massive storage using an LVM over a RAID6 that provides double redundancy (2TB)
- \Rightarrow Automatic compression scheme:
 - Design and implementation using GNU license SW
 - RICE algorithm (NASA's HEARSARC CFITSIO library)

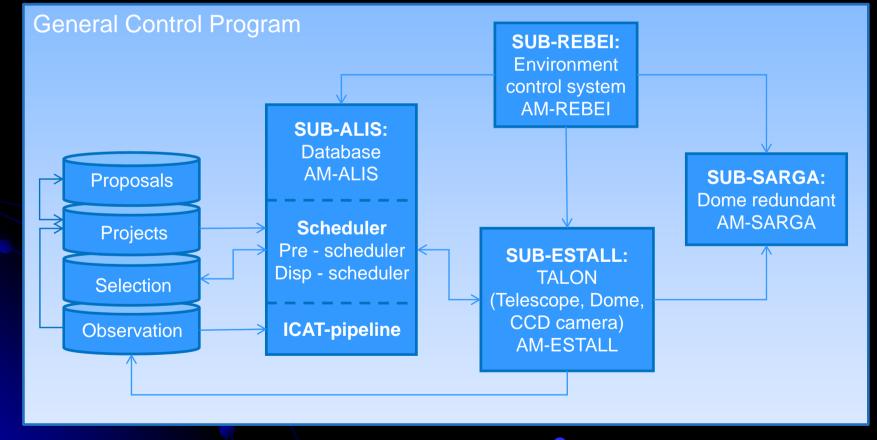
WP 5000: Systems control


- \Rightarrow WP 5100: Environment Monitoring
- \Rightarrow WP 5200: Alarm managers
- \Rightarrow WP 5300: Interfaces

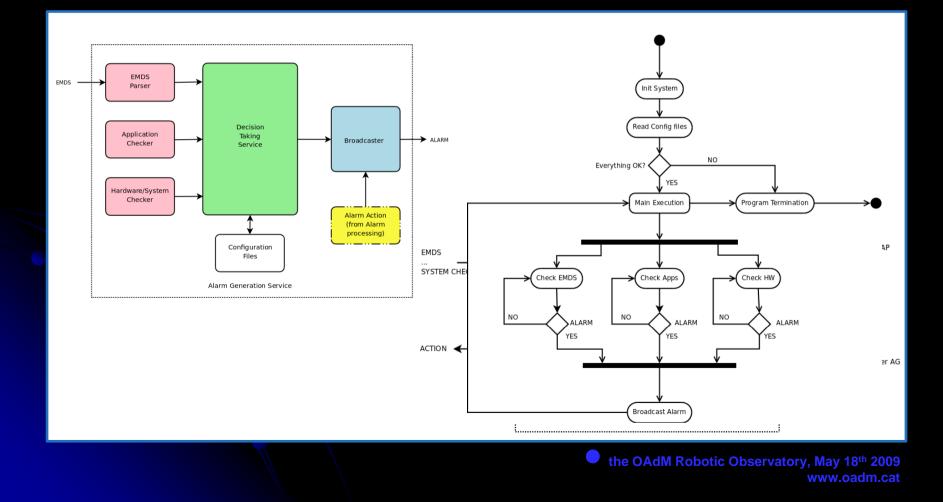
WP 5100: Environment Monitoring

- ⇒ Set of tools to monitor the environmental conditions and to manage and generate alarms according to these conditions
- \Rightarrow Main features:
 - Constant monitoring of the environmental conditions
 - Alarm generation and management
 - Designed to be used for several observatories at the same site

WP 5300: Interfaces


- \Rightarrow Software interfaces (SW SW and HW SW)
- ⇒ Proposal and data management

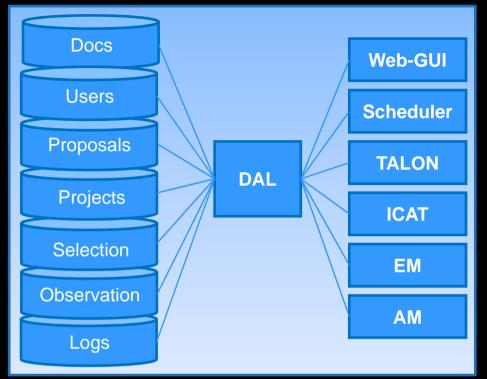
WP 5200: Alarm managers


- ⇒ Distribution of alarm managers, each one running on different computers and with routines subject just to a unique subsystem
- \Rightarrow Server-client architecture, where the AM server informs AM clients at other subsystems about the alarms

General control diagram

WP 5200: Alarm managers

- ⇒ Distribution of alarm managers, each one running on different computers and with routines subject just to a unique subsystem
- ⇒ Server-client architecture, where the AM server informs AM clients at other subsystems about the alarms



WP 6000: Database

- ⇒ Structured using the relational model and implemented using GNU license SW
- \Rightarrow DAL interface

WP 7000: Scheduler

- ⇒ Pre scheduler: selection of objects according to their possibility of observation from those projects approved
- \Rightarrow Dispatch scheduler:

- Executed any time a target observation is over and a new one must be scheduled
- Done in real time according to current environment conditions and the set of priorities
- It calculates the figure-of-merit of each object and the object with the highest merit value is schedule

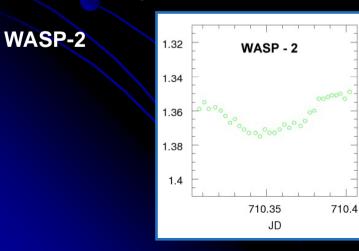
$$m(t) = \sum_{i} \alpha_{i} \cdot f_{i}(t)$$

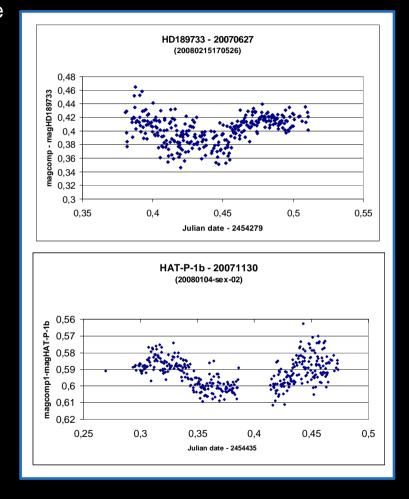
WP 8000: Data processing – The IEEC Calibration and Analysis Tool (ICAT)

- ⇒ Automatic management and treatment of FITS images according to database input information
- \Rightarrow High accuracy photometric and astrometric data extraction
- \Rightarrow Real time execution
- \Rightarrow Automatic or user-controlled (web interface)
- \Rightarrow Use of four packages:
 - NOAO-IRAF
 - DAOPHOT
 - SExtractor
 - CFITSIO
- Based on Perl scripting and executed together with UNIX shell and NOAO-IRAF scripts
- Designed to be easily adapted to be used at other observatories

Commissioning Tests

D.Fernández et al. (poster): "Site Quality at the OAdM and Commissioning of the TJO"


Transiting exoplanets


HD189733b, source data:

- \Rightarrow Apparent Mag. V (star): 7.5
- \Rightarrow Planetary transit depth: 0.025 mag
- \Rightarrow Transit duration: 2h

HAT-P-1b, source data:

- \Rightarrow Apparent Mag. V (star): 10.4
- \Rightarrow Planetary transit depth: 0.015 mag
- \Rightarrow Transit signal period: 4.46529d

Conclusions

ROBOTIC TELESCOPE

- \Rightarrow 2 years to complete the system to achieve high confidence-level robotic operation
- \Rightarrow We have acquired experience and knowledge

LESSONS LEARNED

- \Rightarrow 2 SPF: dome shutter closing and housekeeping (environment monitoring)
- \Rightarrow Redundancies for these critical elements are mandatory
- \Rightarrow New critical SW applications developed (EM, AM, ICAT, Sched, etc.)
- ⇒ HW elements to ensure the system reliability and stability (power supply, electric insulation, etc.)

TIMELINE

- \Rightarrow Testing period (astronomers present)
 - MILESTONE1: Supervised Robotic Operation → Period: May to July
 - MILESTONE2: Unattended RO → Period: August to December
- \Rightarrow Routine operations: Unattended RO \rightarrow Starting: January 2010