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Chapter 1

Preface

Lúthien Tinúviel

Tinúviel was a name given to her by Beren. It literally

means 'daughter of the starry twilight', which signi�es

'nightingale'. She is described as the Morning Star of

the Elves.
Silmarillion

In general, human beings are very curious. They see something unknown and they

stare at it �rst. Then they come closer, smell it, and try to touch it. And �nally, the

thing inevitably ends in the mouth and gets eaten.

Unfortunately, it is not that simple with stars. We cannot go and touch them, we

cannot even smell them (smelloscope of Dr. Farnworth does not count). So the voyers

(called scientists) look and take pictures. They analyze the imagery and search for

some interesting objects. Manual search is very ine�cient, slow and talent-wasting.

And here comes Lúthien to help.

The main motivation of the thesis is to �nd and implement suitable semi-automatic

or automatic computer vision algorithms to speed up the routine process of the me-

teorite search. The software should be fast (real-time in terms of seconds) and easily

extensible for later needs.

This chapter summarizes contents and formulates goals of this work.

1.1 Thesis Structure

The work is divided into two parts - 7 chapters and 4 appendices. The chapters present

details of the ideas standing behind the implementation façade. On the other hand,

the appendices are of rather practical nature.
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Right now you are reading the �rst chapter which discusses the motivation, struc-

ture and goals of the thesis. Some necessary evil of de�nitions is brought by the

second chapter, along with a brief presentation of various pre-processing methods; ba-

sic morphology techniques come next. Chapter number three reviews line extraction

approaches in general, putting more accent on the beloved Hough transform. The

fourth chapter describes the detection procedures implemented in Lúthien. Details

about software and hardware environment can be found in the chapter with number

�ve in its name. Chapter number six summarizes the results of practical experiments,

including some example images. Conclusion and the seventh chapter are the same, to

the letter.

Appendices A and B are supposed to serve as User's and Developer's documentation

of the produced software. Resources used during the development are presented in

Appendix C. Finally, Appendix D is a listing of the default con�guration �le.

1.2 Problem Formulation and Goals

The main goal of this thesis is to deliver a software product dedicated to detect me-

teorite trails present in high-resolution astrography images (circa 16MPix, for more

details see Section 5.1). The images are taken by a wide�eld CCD camera of the

BOOTES system (see Section 5.3). Moreover, this software should be fast enough to

process the pictures within the scope of seconds (30 seconds being the maximum). This

is because the BOOTES system telescope takes continuously one image per minute and

memory cost of storing the pictures for later processing would be too high.

The thesis is also supposed to review suitable image-processing line detection tech-

niques. The application should implement more than one of them in order to perform

some comparison testing. The target platform for Lúthien, as we named the software,

is GNU Linux. User manual and developer documentation are, as required, part of the

eventual work. The applicability of the tool should be demonstrated on real data.
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Chapter 2

Used Digital Image Processing

Techniques

Using interdisciplinary knowledge from psychology, biology, physics, mathematics, and

even art, digital image processing has become very successful in number of areas of

human activity; ranging from medical diagnostics and industrial inspection, nuclear

medicine and astronomical observations, through industry and astronomy X-ray imag-

ing, lithography, microscopy, to radars and biological imaging.

In principle, digital image processing covers two main application areas - image

enhancement to improve 'information readability' of images to a human being and

processing and interpretation of image data done by autonomous machine perception

systems.

Image processing can be divided into some general stages such as image acquisi-

tion, image enhancement, image restoration, compression, morphological processing,

segmentation, representation and description. All of them involve a great multitude of

various procedures and methods which are not possible nor requisite to present in the

scope of this thesis. Following chapter represents a brief overview of some basic image

processing de�nitions and approaches, with more attention paid to techniques directly

used in the practical implementation of Lúthien.

2.1 De�nitions

2.1.1 Discrete Image

De�nition 1 A continuous image is a mapping Ω = [0, x]× [0, y] to a co-domain Rn:

f : R2 ⊃ Ω→ Rn,

3



where n ∈ N, x ∈ R and y ∈ R. Domain Ω is called image domain or image plane,

x is the width of the image, y is the height of the image. In case n = 1, we talk about

a continuous greyscale image.

The output data of most sensors is continuous voltage waveform. However, to create

a digital image (also called a discrete image), we hate to convert these continuous data

into digital form, representable in a computer. The conversion involves discretization

of the domain Ω - sampling (digitizing the coordinate values) and discretization of the

co-domain - quantization (digitizing the amplitude; typically into 256 levels per color

channel).

De�nition 2 A discrete image is a mapping χ = [0, x]× [0, y]to a co-domain Zn:

P : N2 ⊃ χ→ Zn,

where n ∈ N, x ∈ N and y ∈ N, x represents the width of the image, y is the height

of the image. In case n = 1, we talk about a discrete greyscale image.

In further chapters only discrete images are considered.

2.1.2 Convolution

Convolution is an integral that expresses the amount of overlap of one function as

it is shifted over another function. It therefore 'blends' one function with another.

Abstractly, a convolution is de�ned as the product of two functions f and g (objects

in the algebra of Schwartz functions in Rn), after one of them is reversed and shifted.

De�nition 3 Convolution of two functions f and g over a �nite range [0, t] is given

by

(f ∗ g)(t) =

� 0

t

f(τ)g(t− τ) dτ,

where the symbol f ∗ g (occasionally also written as f ⊗ g) denotes convolution of

f and g.

Convolution is more often taken over an in�nite range,

(f ∗ g)(t) =

� ∞

−∞
f(τ)g(t− τ) dτ =

� ∞

−∞
g(τ)f(t− τ) dτ

Typically, one of the functions is taken to be a �xed �lter impulse response, and is

known as a kernel.
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For discrete functions, a discrete version of the convolution (called normal convo-

lution) is employed. It is given by

(f ∗ g)(m) =
∑

n

f(n)g(m− n)

Image processing usually uses a 2-D version of convolution which has the form

g(i, j) =
∑

(m,n)∈O

∑
h(i−m, j − n) f(m, n) (2.1)

The resulting value in the output image pixel g(i, j) is calculated as a linear com-

bination of values in the local neighborhood O of the pixel f(i, j) in the input image.

The contribution of the pixels is weighted by coe�cients of kernel h which is called

a convolution mask.

Convolution is used to implement many di�erent operators, particularly spatial �l-

ters and feature detectors. Examples include Gaussian smoothing (see Section 2.2.3.1)

and the Sobel edge detector (see 2.2.3.2).

2.1.3 Gaussian distribution

The normal distribution, also called the Gaussian distribution, is an important family

of continuous probability distributions. Each member of the family may be de�ned by

two parameters, location and scale: the mean ('average', µ) and variance ('variability',

σ2), respectively.

Due to the central limit theorem, the normal distribution plays a signi�cant role

of a model of quantitative phenomena in the natural and behavioral sciences. Many

psychological measurements and physical phenomena (like noise) can be approximated

by the normal distribution.

De�nition 4 The continuous probability density function of the normal distribution

is the Gaussian function

ϕµ,σ2(x) =
1

σ
√

2π
exp

{
−(x− µ)2

2σ2

}
, x ∈ R,

where σ > 0 is the standard deviation and the real parameter µ is the expected

value.

The Gaussian distribution in 1-D has the form

ϕµ,σ2(x) =
1

σ
√

2π
exp

{
− x2

2σ2

}
, x ∈ R
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In 2-D, an isotropic (i.e., circularly symmetric) Gaussian has the form

ϕµ,σ2(x, y) =
1

σ22π
exp

{
−x2 + y2

2σ2

}
(2.2)

or ϕµ,σ2(x, y) =
1

σ
√

2π
exp

{
−x2 + y2

2σ2

}
,

where x, y ∈ R.

2.2 Image Pre-processing

Pre-processing is a common name for operations with images at the lowest level of

abstraction. The aim of digital image pre-processing is to increase both the inter-

pretability and the accuracy of the treated data. The irrelevant information is sup-

pressed, but the information content is never increased. There are four basic groups

of pre-processing methods: pixel (point) operations, geometric transformations, local

neighbourhood-using methods and methods that work with global information. The

ones relevant to this work are presented in this chapter.

2.2.1 Image Arithmetic

Image arithmetic is the most simple form of image processing. One of the standard

arithmetic operations or a logical operator is applied to one, two or more images. The

value of the output pixel depends only on the values of the corresponding input pixels.

In static scenes, for instance, adding subsequent images in random noise reduction, or

subtracting two subsequent images in motion detection, may be helpful. To selectively

process only a part of an image, a binary mask is often used. The logical operators are

incorporated in binary image processing mostly.

Some basic arithmetic operations:

. pixel addition � g(i, j) = f1(i, j) + f2(i, j)

. pixel subtraction � g(i, j) = f1(i, j)− f2(i, j) or g(i, j) = |f1(i, j)− f2(i, j)|

. pixel multiplication and scaling � g(i, j) = f1(i, j)× f2(i, j)

. pixel division � g(i, j) = f1(i, j)÷ f2(i, j)

. blending � g(i, j) = P × f1(i, j) + (1− P )× f2(i, j),
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where g(i, j) is the output pixel value at position (i, j), f1(i, j) and f2(i, j) are the

input pixel values at position (i, j), and P is the blending ratio.

The truthtables for logical operators are as follows:

logical AND

A 0 0 1 1

B 0 1 0 1

Q 0 0 0 1

logical NAND

A 0 0 1 1

B 0 1 0 1

Q 1 1 1 0

logical OR

A 0 0 1 1

B 0 1 0 1

Q 0 1 1 1

logical NOR

A 0 0 1 1

B 0 1 0 1

Q 1 0 0 0

logical XOR

A 0 0 1 1

B 0 1 0 1

Q 0 1 1 0

logical NXOR

A 0 0 1 1

B 0 1 0 1

Q 1 0 0 1

invert/logical NOT
A 0 1

Q 1 0

2.2.2 Point Operations

Point operations (also called grayscale transformations) do not depend on the position

of the input pixel and do not take the grey value con�guration in the neighborhood

into account. The greyscale is modi�ed globally.

We can describe a point operation as a mapping φ of the original pixel value f(x, y)

into a new pixel value g(x, y) as follows

φ : f(x, y) −→ g(x, y) = φ(f(x, y))

φ can be de�ned in an ad-hoc manner (e.g., for gamma correction, or thresholding),

or it can be computed from the input image (as for histogram equalization).

There are two basic types of point operations - a�ne grayscale transformations

and nonlinear grayscale transformations. A�ne transformations have simple structure

g(x, y) = a · f(x, y) + b. Contrast enhancement, contrast attenuation, brightening,

darkening, greyscale reversion are of such nature. In case b = 0, they are also called

linear grayscale transformations. Nonlinear transformations include thresholding, log-

arithmic dynamic compression, gamma correction and histogram equalization, to name

a few.

Thresholding is a simple, yet powerful method for segmentation. It can be described

7



by the transformation

g(x, y) = φ(f(x, y)) :=

1 for f(x, y) ≥ T

0 else
,

where T is the threshold value, g(x, y) = 1 for image elements and g(x, y) = 0 for

background elements (or vice versa). See Figure 2.1 for an example. Global thresh-

olding uses a single threshold for the whole image (successful only under special cir-

cumstances), hence some advanced variants like adaptive thresholding (also variable

thresholding), optimal thresholding or multi-thresholding [52] were proposed.

(a) (b)

Figure 2.1: Thresholding: (a) original image, (b) simple threshold applied (result inverted).

Histogram (also intensity histogram) is a graph, which speci�es relative occurence

frequency of pixel intensity values within an image. Spatial context does not matter,

since any permutation of the image pixels gives the same histogram. The histogram

can be treated as a discrete probability density function. Histogram equalization is

a monotonic transformation g = τ(f) modifying the histogram so that pixel brightness

levels are distributed equally over the whole scale. The image contrast enhancement is

usually acompanied by a dramatic improvement in the subjective image quality. The

actual implementation is shown in Algorithm 1 and an example of equalized histogram

is demonstrated in Figure 2.2.

2.2.3 Local Pre-processing

Filtration operations (or �ltering) are pre-processing methods that work with the values

of a small neighborhood of the input pixel and the corresponding values of a subimage

with the same dimensions as the neighborhood. The subimage is referred to as a kernel,

window, �lter, mask, or template and its values are called coe�cients.

8



Algorithm 1 Histogram Equalization
1: Input: A W ×H discrete image, L is the total of possible brightness levels in the

image.
2: Initialize an array Arr of length L with zeroes.
3: Create the image histogram.
4: Create the cumulative image histogram CHr

CH[0] = Arr[0]

CH[i] = CH[i− 1] + Arr[i] i = 1, 2, . . . , L− 1

5: Compute the new brightness values transform table

Tab[i] = round(
L− 1

WH
CH[i])

6: The output image graylevels are

gout = Tab[ginp]

.

Filtering can take place in the frequency domain (Fourier transform) or in the spatial

domain, directly on the pixels of the image. In this section, only spatial �ltering is

discussed. For frequency domain approaches overview, see [23].

We distinguish two basic groups of local pre-processing methods - smoothing and

gradient operators. Smoothing techniques suppress small �uctuations in the image

(typically noise), but blur edges at the same time. Gradient operators extract local

changes in the intensity function (edge is a group of pixels where the intensity function

changes signi�cantly).

Linear pre-processing transformations calculate the output value as a linear combi-

nation of pixel values in a close neighborhood of the input pixel. The contribution of

the neighboring pixels can be desribed as discrete convolution by Equation 2.1 .

0 255brightness level

pixel
count

0 255brightness level

pixel
count

(a) (b)

Figure 2.2: Histogram equalization: (a) original histogram, (b) equalized histogram.
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2.2.3.1 Image Smoothing

Smoothing �lters eliminate small details (blurring) in the image and reduce noise using

information redundancy in the image data. The smoothing operation is, in principle,

averaging the brightness values of neighboring input pixels. Impulse noise and thin

stripe degradations can be e�ectively eliminated by smoothing. Such �lters are called

averaging or lowpass �lters.

A box �lter is a spatial averaging �lter, whose all coe�cients are equal. It computes

the standard average of the pixels under the subwindow. For a 3 × 3 neighborhood,

the convolution mask is

h =
1

9

 1 1 1

1 1 1

1 1 1


Example of box �ltration is depicted in Figure 2.3.

(a) (b) (c)

Figure 2.3: Box �ltering: (a) original image, (b) �ltered by a 3× 3 box �lter, (c) �ltered by a 5× 5
box �lter.

The center of the weighted average convolution kernel is sometimes given increased

signi�cance to approximate the properties of a Gaussian probability distribution noise

in more a accurate manner. We can create Gaussian convolution kernels according to

the Gaussian distribution formula 2.2. Hence, the 2-D Gaussian smoothing operator

G(x, y) (also Gaussian) is given by

G(x, y) =
1

σ22π
exp

(
−x2 + y2

2σ2

)
or G(x, y) =

1

σ
√

2π
exp

(
−x2 + y2

2σ2

)
, (2.3)

where σ is the standard deviation, the only parameter of the �lter. It de�nes size

of the neighborhood on which the �lter operates. Some example Gaussian kernels (two

3× 3 Gaussians and one 5× 5 Gaussian) are de�ned as follows
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h =
1

10

 1 1 1

1 2 1

1 1 1

 h =
1

16

 1 2 1

2 4 2

1 2 1

 h =
1

159


2 4 5 4 2

4 9 12 9 4

5 12 15 12 5

4 9 12 9 4

2 4 5 4 2


Alternative smooting approaches, involving rotating mask averaging, median �lter-

ing, order statistics �ltering, are presented in [52].

2.2.3.2 Feature Detectors

As mentioned before, an edge can be interpreted as an abrupt change (discontinuity) in

the image intensity function behaviour. Changes of continuous functions are described

using derivatives. As image function is usually 2-D function, partial derivatives and

gradient are used. Gradient shows the direction of the largest growth of the function.

An edge at a particular pixel position has two properties - magnitude (size of the

gradient) and direction (perpendicular to the gradient direction).

The gradient of f(x, y) at coordinates (x, y) is de�ned as a column two-dimensional

vector

∇f =

[
gradx

grady

]
=

[
∂f
∂x
∂f
∂y

]
The gradient magnitude and the gradient direction φ are given by

mag(∇f) =
√

grad2
x + grad2

y =

√(
∂f

∂x

)2

+

(
∂f

∂y

)2

φ = arg(
∂f

∂x
,
∂f

∂y
),

where arg(x, y) is the angle from the x-axis to the point (x, y), measured in radians.

Because of high computational costs, it si common to approximate the gradient

magnitude by

mag(∇f) ≈| gradx | + | grady | (2.4)

First-order derivatives are usually approximated by di�erences

∂f

∂x
= f(x + 1, y)− f(x, y) and

∂f

∂y
= f(x, y + 1)− f(x, y)
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Examples of the �rst-order derivative approximating operators will be presented in

the following paragraphs.

One of the oldest and simplest is Roberts Cross operator with convolution masks

h1 =

[
1 0

0 −1

]
h2 =

[
0 1

−1 0

]
Only four pixel values are used. Thus, the output is easy to compute, but highly

sensitive to noise.

Prewitt operator is one of the compass operators, which are able to compute the

gradient direction, as well. The �rst two convolution masks of the Prewitt operator

are de�ned as follows (others are created by simple rotation)

h1 =

 1 1 1

0 0 0

−1 −1 −1

 h2 =

 0 1 1

−1 0 1

−1 −1 0


Sobel operator is a simple, yet very popular pre-processing edge detector. Its �rst

three convolution masks (again, others created by rotation) are given by

h1 =

 1 2 1

0 0 0

−1 −2 −1

 h2 =

 0 1 2

−1 0 1

−2 −1 0

 h3 =

 −1 0 1

−2 0 2

−1 0 1


Sometimes (usually for horizontal and vertical edge detection) only h1 and h3 masks

are used. In such case the magnitude can be computed as
√

x2 + y2 or approximated

by | x | + | y |, where x is the response to the h1 mask and y is the response to the

h2convolution mask (see Figure 2.4). The gradient direction is given by tan−1( y
x
).

(a) (b)

Figure 2.4: Sobel edge detection: (a) original image, (b) sobel detection result (masks h1 and h3

applied).
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Other �rst-order operators are Kirsch operator and Robinson operator [52].

To enhance �ne details, second-order derivatives are sometimes used. They act more

aggressively in enhancing sharp changes (thin lines, isolated points, but also noise).

Moreover, they produce thinner edges in an image than the �rst-order derivatives.

Their disadvantage is double-response to step changes. While the �rst derivative has

an extremum at the position of an edge (abrupt brightness function change), the second

derivative is equal to zero at the same position (see Figure 2.5). Yet it is much easier

to �nd a zero-crossing than the exact extremum coordinates.

x

f(x)

x

f ′(x)

x

f ′′(x)

(a) (b) (c)

Figure 2.5: First and second derivatives of 1-D function: (a) original function f(x), (b) its �rst

derivative, (c) second derivative of f(x). Notice the zero-crossing in (c).

A very popular second-order derivative approximating operator is the Laplace op-

erator (also Laplacian) de�ned as

∇2f =
∂2f

∂2x2
+

∂2f

∂2y2

Similarly to the �rst-order derivatives, the second-order derivatives are approxi-

mated by di�erences

∂2f

∂2x2
= f(x−1, y)−2f(x, y)+f(x+1, y) and

∂2f

∂2y2
= f(x, y−1)−2f(x, y)+f(x, y+1)

Masks used for practical implementations are

h =

 0 1 0

1 −4 1

0 1 0

 h =

 1 1 1

1 −8 1

1 1 1


To compute the second derivative robustly (remember its high sensitivity to noise),

the image is smoothed �rst. In practice, Gaussian smoothing operator is used. Ap-
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plying the Laplacian operator ∇2 (computes the second derivative) on a gaussian pre-

smoothed image is called Laplacian of Gaussian (abbrev. LoG, or ∇2G)

∇2 [G(x, y, σ) ? f(x, y)]

Using linearity of the operators and substitution we get the equation for an LoG

convolution mask

h(x, y) = c

(
x2 + y2 − σ2

σ4

)
exp

(
−x2 + y2

2σ2

)
,

where c is a normalizing multiplicative constant. Examples of discrete 5 × 5 and

7× 7 LoG approximation follow

h =


0 0 −1 0 0

0 −1 −2 −1 0

−1 −2 16 −2 −1

0 −1 −2 −1 0

0 0 −1 0 0

 h =



0 0 −1 −1 −1 0 0

0 −1 −3 −3 −3 −1 0

−1 −3 0 7 0 −3 −1

−1 −3 7 24 7 −3 −1

−1 −3 0 7 0 −3 −1

0 −1 −3 −3 −3 −1 0

0 0 −1 −1 −1 0 0


Because of its shape, the inverted ∇2G is often referred to as Mexican hat. The

LoG operator is often approximated by di�erence of Gaussians with di�erent standard

deviation values, called di�erence of Gaussians (DoG).

For the zero-detection phase a true zero crossing detector implementation is neces-

sary. For example, we can use a 2 × 2 moving window. We assign the 'edge label' to

the upper left pixel, if LoG values of both polarities (positive and negative) appear in

the window simultaneously.

2.2.3.3 Canny Edge Detector

In [7] John F. Canny came with an edge detector intended to be optimal according to

three basic criteria. First, no important edges should be missed and no false positives

should be detected. Second, the edge points should be localized as well as possible (the

distance between the detected and actual edge location is minimal). And the third

criterion says that no multiple responses to a single edge are allowed.

Canny took advantage of the fact that convolving an image using a symmetric 2 di-

mensional Gaussian and di�erentiating the result perpendicular to the edge direction
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(in the gradient direction) creates an e�ective and simple directional operator

∂G

∂n
= n.∇G = Gn,

where G is a 2-D Gaussian, Gn the resulting operator and n the direction per-

pendicular to the edge. We can approximate the direction using smoothed gradient

direction as

n =
∇ (G ? f)

| ∇ (G ? f) |
The local maximum of the image f convolved with Gn in the direction n then gives

us the edge location

∂

∂n
Gn ? f = 0

Using substitution for Gn we get

∂2

∂2n
G ? f = 0 (2.5)

This approach to �nd local maxima in the direction perpendicular to the edge is

called non-maximal suppression. It is used to suppress any pixel value not considered

to be an edge pixel, leaving just thin edge lines (Figure 2.6(b)).

Convolution and derivative are associative operations. In Equation 2.5, advantage

of this fact is taken. The order of applied operations is changed, convolving the image

with the Gaussian G before computing the second-derivative (using the Sobel operator,

for instance). The magnitude of the gradient (also the strength of the edge) can be

found as

| Gn ? f |=| ∇(G ? f) |

To get the edge pixels, the second-derivative output is usually thresholded. Using

single threshold value would induce the 'streaking edges problem' (breaking up of the

edge contours), as the output �uctuates above and below the threshold. Thresholding

with hysteresis is used to eliminate the 'streaking'. Pixels with edge strength above

the high threshold are immediately declared edge pixels (called edgels). Pixels with

edge strength above the low threshold are considered edgels if they are connected to

a high-threshold edge pixel (Figure 2.6(c)).

All in all, the e�ect of the Canny operator is determined by three parameters - the

smoothing Gaussian mask width (scale of the Canny detector), and the values of the

high and the low thresholds. Increasing the width of the Gaussian makes the detector

less sensitive to noise, but some of the �ne detail in the image may be lost and the

localization error can increase. Setting the upper tracking threshold to a high value

15



(a) (b) (c)

Figure 2.6: Canny edge detector: (a) original image, (b) non-maximal suppression result, (c) thresh-

olding with hysteresis eliminates weak edge points.

and the lower threshold to a low value usually returns good results. Too high values

of the low threshold cause noisy edges to break up, while too low values of the upper

threshold increase the number of spurious edge fragments in the detector output.

Di�erent scales of the Canny detector yield signi�cantly di�erent results. To solve

the problem of �nding the correct scale, Canny proposed a feature synthesis method.

The detection is repeated multiple times at di�erent scales and important edges not

detected at smaller scales are accumulated into a cumulative edge map.

The Canny edge detection process is brie�y described in Algorithm 2.

Algorithm 2 Canny Edge Detection
1: Convolve an image f with a Gaussian of scale ρ.
2: For each pixel estimate local edge normal directions n using

n =
∇ (G ? f)

| ∇ (G ? f) |

3: Find the edge locations using non-maximal suppression.
4: Compute the edge magnitudes.
5: Threshold edges with hysteresis.
6: Repeat steps (1) through (5) for ascending values of the standard deviation ρ.
7: Aggregate the �nal information using the 'feature synthesis' approach.

Because of its complexity, full implementation of Canny's edge detector is unusual.

Common implementations involve steps 2 - 6 of the algorithm only.

2.3 Morphology

Mathematical morphology is a theoretical model for digital images based on mathe-

matical concepts from set theory, lattice theory and topology using shift-invariant

(translation invariant) operators. The morphological operators are widely used for the
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image analysis, including edge detection, noise removal, image enhancement and image

segmentation. Originally developed for binary images, mathematical morphology was

later extended for grayscale images and multi-band images.

In a binary image, the pixels can be divided into two groups - foreground and

background pixels. We can look at the image as a set of 2-D (n-dimensional, in general)

Euclidean coordinates of all the foreground pixels in the image. For a grayscale image,

the intensity value represents the height above a base plane. Hence, the grayscale

image represents a surface in 3-D Euclidean space. Binary morphology can be seen as

a special case of grayscale morphology, in which the input image has only two graylevels

- 0 and 1, respectively.

The two most basic operations in mathematical morphology are erosion and dila-

tion. Conceptually, the structuring element is translated to various pixel positions of

the input image, and the intersection between the translated kernel coordinates and

the input image coordinates is examined.

The structuring element (also known as a kernel) is a set of point coordinates,

although often represented as a binary image. In comparison with the input image,

it is usually much smaller (typically 3 × 3 pixels) and its coordinate origin is often in

its centre instead of in one of the corners. A morphological operator is de�ned by its

structuring element and the applied set operator.

Let A denote a binary image and B denote a structuring element, both sets in Z2.

The basic morphology operations are de�ned as follows.

Erosion of A by B (denoted A	B) is de�ned by

A	B = {z | (B)z ⊆ A}

For each foreground pixel of the input image ('input pixel'), the structuring element

is superimposed on top of the input image so that the origin of the structuring element

coincides with the input pixel position. The input pixel is left as a foreground pixel

only in case all the input pixels coinciding with the structuring element pixels are

foreground pixels. Otherwise the input pixel is marked as a background pixel.

The erosion operator applied on a binary image shrinks (erodes away) the bound-

aries of foreground regions in the image. Hence, areas of foreground pixels are reduced

in size, while background holes within those areas become larger.

Dilation of A by B (denoted A⊕B) is de�ned by

A⊕B =
{

z | (B̂)z ∩ A 6= ∅
}

where B̂ stands for the re�ection of B (also rational set, symmetrical set or trans-
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pose), given by B̂ = {w | w = −b, for b ∈ B}.
For each background pixel of the input image ('input pixel') the structuring element

is superimposed on top of the input image so that the origin of the structuring element

coincides with the input pixel position. The input pixel is marked as a foreground

pixel in case at least one structuring element pixel coincides with an input foreground

pixel underneath (see Figure 2.7 for an example). Otherwise the input pixel stays

a background pixel.

Figure 2.7: Image dilation using 4-continuity structure element (in the middle).

The dilation operator gradually enlarges the foreground pixel regions, while holes

within those areas become smaller or dissapear completely.

Dilation and erosion are dual morphology operations of each other with respect

to set re�ection and complementation, i.e., eroding foreground pixels is equivalent to

dilating the background pixels. That is,

(A	B)c = Ac ⊕B,

where Acstands for the complement of A, de�ned as Ac = {w | w /∈ A}. But neither
erosion nor dilation is an invertible operation.

Virtually all other mathematical morphology operators can be derived by using ero-

sion and dilation along with set operators, such as intersection and union. Some of the

most important are opening, closing, hit-or-miss transformation and skeletonization.

Opening A by B (denoted A ◦B) is de�ned as

A ◦B = (A	B)⊕B

The erosion of A by B is followed by a dilation of the resulting structure by B. Opening

represents a basic morphological tool for small objects (noise) and holes removal.

Closing A by B (denoted A •B) is de�ned as

A •B = (A⊕B)	B
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The dilation of A by B, followed by erosion of the resulting structure by B. See

Figure 2.8 for an example.

Figure 2.8: Image closing (dilation followed by erosion) using asymetrical structure element. Notice

how the hole in the input structure disappeared (got 'closed').

Like erosion and dilation, opening and closing are dual morphology operations of

each other with respect to set re�ection and complementation, too. That is,

(A •B)c = Ac ◦ B̂

The hit-or-miss transformation is a morphological operator designated to �nd

groups of pixels with certain shape properties, such as border points, or corners. A pair

of disjoint sets B = (B1, B2) is used as the structuring element (called a composite

structuring element). A pixel p is marked a foreground pixel, if the B1 part of the

composite structuring element is contained in A, and the part B2 is contained in Ac.

Thus, the hit-or-miss transformation (denoted A�B) is de�ned by

A�B = {p : B1 ⊂ A and B2 ⊂ Ac}

The transformation actually provides a binary matching between the structuring

element and the original image. We can de�ne it using operations of erosion and

dilation as well

A⊗B = (A	B1) ∩ (Ac 	B2) = (A	B1) \ (A⊕ B̂2)

Skeletonization is a process of reducing foreground regions in a binary image to

a skeleton, a remnant largely preserving some basic topological and size characteristics

of the original shape (like extent and connectivity), while deleting most of the original

foreground pixels. Originally, the idea of skeleton was proposed by Harry Blum, who

illustrated it using the 'grass�re scenario'. Let a region A be a part of R2. A grass�re

starts on the entire boundary of A at the same time and advances towards the region

interior with constant speed. The skeleton S(A) is then the set of points, where two

or more �refronts meet. The notion of a skeleton as a simple and compact shape
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representation is intuitive, the exact de�nition can be found in [23]. Two example

skeletons are presented in Figure 2.9.

Figure 2.9: Skeletons of a rectangle and a circular object with hole.

Morphological thinning is one way to produce a skeleton. Successive erosion elimi-

nates pixels from the boundary (while preserving the end points of line segments) until

no more thinning is possible, leaving the approximation of the actual skeleton.

The thinning of a set A by a structuring element B = (B1, B2) (denoted A � B)

can be de�ned in terms of the hit-or-miss transform as

A�B = A \ (A⊗B) (2.6)

Hence, a part of the foreground boundary is eroded by the set di�erence opera-

tion. A more useful method for thinning A symmetrically is based on a sequence of

structuring elements

{B} =
{
B1, B2, B3, . . . , Bn

}
,

where Bi is a rotated version of Bi−1. Using this concept, we now de�ne thinning

by a sequence of structuring elements as

A� {B} = ((. . . ((A�B1)�B2) . . . )�Bn)

The process is to thin A by one pass with B1, then thin the result with one pass of

B2, and so on, until A is thinned by one pass of Bn. The entire process is repeated until

no further changes occur. Each individual thinning pass is performed using Equation

2.6.

One of the structuring element sequences often used in practice is called the Golay

alphabet [22]. The basic 3× 3 structuring element L of the Golay alphabet is de�ned

as

L1 =

 0 0 0

∗ 1 ∗
1 1 1

 L2 =

 ∗ 0 0

1 1 0

∗ 1 ∗

 L3 =

 1 ∗ 0

1 1 0

1 ∗ 0

 . . . ,
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where the B1 element is composed of 1 values, zeroes belong to the element B2, and

pixels at asterisk ∗ positions are insigni�cant in the matching process. The remaining

�ve matrices are given by simple rotation. The thinned result consists only of 1-pixel

wide lines and isolated points.
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Chapter 3

Lineal Features Extraction

Finding lineal features (or line detection) in an image is a classical image processing

problem and has been studied for many years. It is a basic, yet very important pre-

processing step in many object recognition and scene analysis procedures, because lines

can be used to describe many arti�cial (man-made) objects and represent a mathemat-

ically simple intermediate level primitive, at the same time.

3.1 Method Overview

There have been several approaches how to extract lineal primitives, all of which have

their particular advantages and disadvantages. A brief overview of the most important

categories of line detection methods is presented in this section.

3.1.1 Classic Approaches

Probably the most widely used method for lineal features extraction relies on edge link-

ing and segmentation. Commonly, lines are viewed as extended or contiguous edges.

Consequently, the basic idea is to �nd local edge pixels using some low-level processing

(like gradient computation using some adequate mask, e.g., Sobel or orthogonal masks

by Frei and Chen [21]). Then they are linked into contours on the basis of their neigh-

bourhood and similar gradient magnitude and direction values. Finally, the contours

are joined into relatively straight pieces.

The Nevatia-Babu line �nder [60] along with works of Zhou et al. [78] and Nalwa

and Pauchon [57] represent classic examples of this approach. Etemadi's method [19]

�nds chains of edgels using the Marr-Hildreth edge detector and separates the chains

into pieces that are symmetric about their centroid. Consequently, it attempts to inter-

connect these into longer segments. A local approach using block-based line segment
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detection can be found in [45]. Lee and Kweon [44] developed a six-step algorithm

consisting of edge detection, edge scanning, edge normalization, line-blob extraction,

line-feature computation and line linking. The stick growing method by Nelson [59]

incorporates matching measure for a line segment with explicit lineal and end-stop

terms, its parallelization possibilities are discussed in [30]. The algorithm starts with

small sticks at high-gradient starting points found by the hill climbing method (stick

growing), then their tips are extended until the end-stop criteria are reached. Zucker

et al. [79] used a relaxation process to group edges into lines; Kanazawa and Kanatani

[40] proposed an asymptotic approximation to �t a model of a line to an edge segment.

Eichel and Delp [62] created a sequential model to link edge pixels based on Markov

random �elds. This work was extended to multiresolution approaches by Cook and

Delp [13, 14].

The main problem with edge (or edgel) linking approaches is that they have a strong

tendency to be sensitive to the output of the edge detection. They enhance noise and

may generate dense edge maps, which makes successive processing more di�cult. Fur-

thermore, they usually have trouble bridging gaps. The segmentation process can

also be unstable, particularly if there is any bumpiness in the pattern. Some of these

problems can be solved by using grouping techniques [50] and multiresolution repre-

sentations [72].

3.1.2 Hough Transform-based Methods

The second methods parameterize potential lines in edges detected in the scene and

then base the detection in the parameter space. The Hough transform [17] has been

widely used for detecting lines in (mostly binary) images using this approach. Local

edges vote for all possible lines they are consistent with. The votes are summed up to

determine what lines are actually present. A veri�cation phase may also follow. The

main setbacks of this approach are computational complexity, higher storage require-

ments, and lack of locality. The method is rather expensive to implement, because

every edge pixel must vote for all the lines it is consistent with. This can present

a large �gure, depending on the desired resolution and on how the segment space is

parameterized. The method is nonlocal and bridges gaps well, but may combine un-

related data. Hence, extensive post-processing is often needed. Since HT is a crucial

element in one of the Lúthien methods (see Chapter 4), it is presented in more detail

in Section 3.2.
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3.1.3 Alternative Techniques

The third approach of lineal feature detection utilizes the gradient direction to partition

the image into a group of support regions, each of which will afterwards be associated

with a single feature (due to Burns et al. [6]). A least-squares �tting procedure is used

to �t a line segment to every region. This method can detect low-contrast features,

but the segmentation can be unstable. Equally, features can rather easily be broken

up by local perturbations, i.e., we face the gap problem again.

There are also other, less common approaches. Statistical method by Mansouri et al.

[53] proposes a hypothesize-and-test algorithm to �nd line segments of a given length

by hypothesizing their existence based on local information, and attempting to verify

that hypothesis statistically on the basis of a digital model of an ideal segment edge.

Work of Mattavelli and Noel [54] is based on combinatorial optimization of partitioning

an inconsistent linear system, which is constructed from the coordinates of all contour

points in the image as coe�cients and the line parameters as unknowns. Kass et al. [51]

presented a method involving an optimization process for �tting a geometric structure

to data on a basis of an energy optimization procedure. Liu et al. [49] proposed

a special spatial characteristic model for describing line structures in an image.

3.2 Hough Transform

The Hough Transform (abbrev. HT, pronounced /hΛf/) [26, 43], also called the stan-

dard Hough transform (SHT), was �rst proposed by Paul Hough [28, 34]. It is a popular

method for detecting image patterns like straight lines or circles and has been genera-

lized to extract any arbitrary shape at given orientation and scale in both binary and

greyscale images.

Initially, it was used in machine analysis of bubble chamber photographs [75].

The Hough transform was patented as U.S. Patent 3,069,654 in 1962 with the name

"Method and Means for Recognizing Complex Patterns" [28]. This patent introduces

a slope-intercept parametrization for straight lines. The rho-theta parametrization uni-

versally used today was brought by Duda and Hart in [17]. For more information about

HT for line detection, see Section 3.2.1.

HT is essentially a voting process, in which each point belonging to the pattern votes

for all the possible patterns passing through that point. The votes are accumulated in

an accumulator array and the pattern receiving the maximum vote is taken to be the

desired pattern. Accuracy of the transform has been discussed in [68, 5, 61]. Hardware

implementations are described in [27] and [11]. Industrial applications of the transform

are discussed in [69].
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The main advantages of HT are its robustness to noise in the image and discon-

tinuities in the pattern (gaps, occlusions), even in a complicated background. The

disadvantages of the SHT are its demand for a tremendous amount of computing

power and high memory costs. Both requirements increase linearly with the resolu-

tion, at which the parameters are determined. Moreover, digitizing and quantization

errors sometimes in�uence the accumulation of the peaks, e.g., multiple and sparse

distribution occurs. Finally, certainty of line is based on the votes number, so using

too �ne discretization or a parameter space of dimension higher than three may cause

di�culties in the peak detection process. The same holds for clear but short segments

that may not be detected.

For the �rst problem, the probabilistic Hough transform (PHT) by Kiryati et al. [41]

and the randomized Hough transform (RHT) by Xu et al. [76] have been proposed.

The extended RHT by Kalviainen et al. [38] realized a more e�cient detection by

applying RHT in the sub-windows randomly selected in the image.

For the second problem, quantization errors have been analyzed and discussed in the

high precision Hough transform by Morimoto et al. [55] and in the e�cient sampling

methods by Goto et al. [24] and Van Veen et al. [74].

For the third short segment extraction problem, Princen et al. [65] proposed the

hierarchical Hough transform, which uses hierarchical grouping process in conjunction

with a local Hough transform.

The various HT variants were proposed in order to minimize the above mentioned

computation and memory requirements, the major drawbacks of the standard HT.

Some of them are based on a coarse-to-�ne iterative search algorithm, e.g., the adaptive

Hough transform (AHT) [33], the fast Hough transform (FHT) [46] and the multire-

solution Hough transform (MHT) [3]. A set of reduced-resolution images is generated

from the original image. Initially, the Hough transform is applied to the smallest

image, hence using a very small accumulator array. Successive iterations use images

and accumulator arrays of increasing sizes. The AHT uses a small accumulator array

and the idea of a �exible iterative accumulation and search strategy for peak detection.

It �rst analyzes the accumulator array at low resolution and then continues down into

the neighbouring area of the peak at subsequent iterations. The starting binary edge

image and the same accumulator array are repetitively used during all the iterations.

The FHT is based on a hierarchical approach. The parameter space is gradually divided

into hypercubes from low to �ne resolution and performs the Hough transform only on

the hypercubes with votes exceeding a selected threshold.

Further improvements of HT were introduced by Chatzis et al., namely the fuzzy

cell Hough transform (FCHT) [9] and a combination of RHT and FCHT - randomized
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fuzzy cell Hough transform (RFCHT) [10]. The latter splits the parameter space into

fuzzy cells with overlapped intervals of con�dence. Murakami and Naruse [56] presented

a 'partial to global' approach applying HT in small windows and extending the line to

another area if needed; Kamat and Nagesan [39] used the butter�y-shaped spread of

votes in the accumulator to adaptively de�ne windows of interest around a detected

peak of multiple line segments. Song et al. [71] came up with an idea of a boundary

recorder to eliminate redundant analysis steps. They employed an image-analysis-based

line veri�cation method to overcome the di�culty of using a threshold to distinguish

short lines from noise.

3.2.1 Hough Transform for Line Detection

In this section the simplest case of Hough transform - the Hough linear transform - will

be presented. In general, using HT to detect lines consists of three steps: accumulation,

peak detection and line veri�cation. A pre-processing phase is usually necessary to

extract feature points (medial or edge points) from the image.

At �rst, let us examine the mathematical background of the method in brief. Let

(x1, y1) be a point in 2-D image space. Then a straight line passing through this point

can be represented in the so-called slope-intercept form as y1 = mx1 +b, where m is the

slope of the line and parameter b is its intercept. Hence, the straight line y1 = mx1 + b

can be represented as a point (b, m) in the slope-intercept space (also called parameter

space). All of the in�nitely many lines passing through (x1, y1) have to satisfy the

equation for varying values of m and b. Rewriting this equation as b = −mx1 + y1 and

considering the mb-plane, we get the equation of a single line for a �xed pair (x1, y1).

Now consider a second point (x2, y2). It has a line in parameter space associated

with it as well. We will name the interesection of the two lines by (m′, b′), where m′

is the slope and b′ is the intercept of the line ←→w containing both points (x1, y1) and

(x2, y2) in the original xy-plane (see Figure 3.1). As a matter of fact, all of the lines

in parameter space, which are associated with the points contained on the line ←→w ,

intersect at the point (m′, b′).

Disadvantage of the slope-intercept representation lies in its instability caused by

unboundedness of the two parameters. As lines get more and more vertical, the mag-

nitudes of m and b grow towards in�nity. Moreover, discretization of m is non-linear.

Duda and Hart [17] came with a solution based on di�erent, normal parametriza-

tion. Two other parameters are used, commonly named ρ and θ. The parameter ρ

represents the algebraic distance between the line and the origin, while θ is the angle

of the vector from the origin to this closest point. Using this parametrization, the

equation of the line can be written as
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Figure 3.1: Hough tranform: (a) line in image space, (b) slope-intercept parametrization of the line.
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)x + (

ρ
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which can be rearranged to

ρ = x cos θ + y sin θ (3.1)

To each line of the image it is possible to associate a couple (ρ, θ), which is unique,

if θ ∈ [0, π) and ρ ∈ R, or if θ ∈ [0, 2π) and ρ ≥ 0. The ρθ-plane is sometimes referred

to as Hough space (see Figure 3.2). This representation makes the Hough transform

conceptually very close to the two-dimensional Radon transform [15].

Again, Hough transform maps all the pixels on a line into one point in the ρθ-plane.

Instead of a a straight line, the trace is now a sinusoidal curve, as all the lines going

through a point (x, y) obey the equation ρ(θ) = x cos θ+y sin θ. Like before, N colinear

points in the xy-plane lying on a line ρi = x cos θj + y sin θjyield N sinusoidal curves

intersecting at (ρi, θj) in the parameter plane.

θ1

ρ1

y

x

ρ1

θ1

ρ

θ

(a) (b)

Figure 3.2: Hough tranform: (a) line in image space, (b) normal parametrization of line.

Thus, we managed to convert the problem of detecting colinear points in an image

to the problem of �nding concurrent curves in its Hough space. The accumulation and

peak detection phases are described in more detail in Section 3.2.1.1.
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The line veri�cation step is supposed to �nd the exact location of line segments

along the line. The basic method is to sequentially check the connectivity of feature

points within the narrow strip area determined by the peak parameter (ρi, θi), the

quantization interval ∆ρ, and the sampling interval ∆θ. The feature points are searched

for iteratively and the line equation is calculated frequently. Therefore, for large-sized

images containing numerous lines this step may be more time-consuming than the

previous two steps.

3.2.1.1 Implementation

For the computational purposes, the values of m and b are discretized by uniform

subdivision of the parameter space into so-called accumulator cells. The dimension of

the accumulator is equal to the number of unknown parameters of Hough transform

problem. The cell at coordinates (i, j) has the accumulator value Acc(i, j), initially

set to zero. For each point (xk, yk) in the xy-plane, we iterate parameter m through

all its allowed subdivision values, compute the other parameter b using the equation

b = −mxk + yk and round it to its nearest allowed value. For every pair (ms, bt), we

increment the value Acc(s, t) by 1. Consequently, at the very end of this algorithm,

the value Acc(u, v) is equal to the number of all points in the xy-plane lying on the line

yu = mxv + b. The accuracy depends on the number of subdivisions of the parameter

space. For an example of a Hough parameter space, see Figure 3.3.

(a) (b)

Figure 3.3: Hough transform - line detection: (a) original image, (b) parameter space with sinusoidal

curves associated with the points in the image plane. Notice two bright peaks corresponding to the

two lineal groups of points in the original image.

Detecting the local maxima in the accumulator is sometimes a non-trivial part of

the problem. The simplest way of �nding these peaks is by applying some form of

threshold, or by �nding the local maxima within an NxN neighborhood. The choice

of N is important: using too large N will suppress some real lines, setting N too
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small will yield overlapping lines. Princen et al. [65] proposed an iterative global peak

detection method. This method is more robust than clearing a rigid-size neighborhood,

but it is very time consuming for a large-sized image due to the iterative accumulations.

Since the lines returned do not contain any length information, it is often necessary

to �nd, which parts of the image match up with found lines.

3.2.2 Hough Transform for Curve Detection

It is straightforward to generalize the HT for detection of more complex curves that

can be described by an analytic equation. Consider an arbitrary curve represented by

an equation f(x, a) = 0, where a is the vector of the curve parameters. See Algorithm 3

for a general algorithm for Hough transform curve detection, as presented in [52].

Algorithm 3 Curve detection using the Hough transform
1: Quantize the parameter space within the limits of parameter a. The dimensionality

of the parameter space is equal to the number of parameters of the vector a.
2: Create an n- dimensional accumulator array Acc(a) with structure matching the

quantization of parameter space; set all cells to zero.
3: For every foreground point (x, y), increment all accumulator cells Acc(a) by ∆Acc

if f(x, a) = 0 for all a inside the limits used in step 1.
4: Local maxima in the accumulator array Acc(a) correspond to realizations of curves

f(x, a) that are persent in the original image.

For instance, a circle can be parameterized as

(x− a)2 + (y − b)2 = r2, (3.2)

where the circle has center (a, b) and radius r. For each pixel x, all accumulator

cells coresponding to potential circle centers (a, b) are incremented. The cell Acc(a, b, r)

is incremented in the case point (a, b) is at distance r from point x, and this condition

is valid for all triplets (a, b, r) satisfying equation 3.2.

Because of the three curve parameters, the accumulator has to be three-dimensional

and therefore circles require more computation and storage space to �nd than lines.

Since the computation grows exponentially with the number of parameters, the Hough

transform is typically used only for simpler curves, such as straight lines or parabolas.

3.2.3 Generalized Hough Transform

The generalized Hough transform is used when an analytical description of the feature

we are searching for is not possible. Instead of a parametric equation describing the

29



feature, we use some sort of lookup table, correlating locations and orientations of po-

tential features in the original image to some set of parameters in the Hough transform

space [4].

Still, even the generalized Hough Transform requires the complete speci�cation of

the exact shape of the target object to achieve precise segmentation. It allows detection

of objects with complex, but pre-determined shapes.
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Chapter 4

Lúthien

4.1 Target Platform and Environment

The program is destined for the Intel x86 architecture and runs on the GNU Linux

platform - primarily developed under (K)Ubuntu 7.04, a free, Debian derived Linux-

based operating system. There should be no obstructions regarding other major *nix

distributions, either.

Lúthien requires CFITSIO, ImageMagick and RTS2 libraries to be present (C.2).

4.2 Programming Language

The whole program core is written in object-oriented C++ programming language.

There were several reasons to do so � the possibility to integrate the code with the

RTS2 library and to derive classes from it; CFITSIO is a C library; bene�ts of object

oriented approach, such as easily extensible and readable code and speed of C++

compiled code.

Bash scripts were used for testing purposes.

4.3 Program Interface

At the moment, Lúthien is a command line application to be launched using console

or a shell script. In general, the command looks as follows

$ luthien {-h|-e|-r} -i IN1:IN2 [-o OUT1[:OUT2]] [-m MASK] [-n NUM] [-v]

Some typical examples and further information can be found in the User's Manual,

in Appendix A.
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Constants important for �exible and fast adjustment of the detection methods

are included in the con�guration �le 'config.cfg'. For more information, see Sec-

tion A.4.1.

One of the possible future improvements is a graphical interface for the program

arguments and con�guration �le setup. At the moment, it does not seem to be neces-

sary.

4.4 Line Detection Implementation

The problem speci�cation and some special characteristics of the supplied astrographic

images provide us several ways how to fasten up the detection process, while keeping

it as simple as possible. This section discusses such features and describes solutions

chosen to exploit them.

Information redundancy

. Redundancy in time � Motion is a powerful cue to extract objects of interest from

a background of irrelevant detail. For instance, in tracking of moving vehicles in

a sequence of images, subtraction is used to remove all stationary components.

What is left should be the moving elements, plus noise. The BOOTES system

takes one wide�eld image per minute, in a continual series all night long. The dif-

ference between two consecutive images caused by the Earth rotation is relatively

small. We can say that 'normal' sky objects (like stars, planets, sky background,

as well as buildings on the image borders) are almost stationary components in

the image. And then, meteorites (as short-term changes in the sky) represent

moving objects. Thus, one of the basic ideas for Lúthien implementation is to

always take a pair of two successive images and compute their pixel-by-pixel dif-

ference image. In order to bring out more detail, we can also perform a contrast

stretching transformation. Such di�erence image has small brightness values.

Di�erence image computation can be found in the pre-processing stages of all

three Lúthien detection methods.

. Redundancy in spatial information � Typically, the FITS images processed by

Lúthien have spatial resolution of around 4100× 4100 pixels. Size of such FITS

images is around 32 MBytes (or 20 MBytes as gzipped �les). Therefore, the

computational and memory costs are high. But thanks to high spatial information

redundancy we do not need to work with all the pixels. The least computationally

demanding method to extract only a representative part of the image pixels is

directly supported by the CFITSIO library. It o�ers a special FITS �le opening
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mode in which only every n-th pixel in each axis direction is loaded. Class

L_Rts2Image uses this mode in the loadFitsPixelData method for the same

pupose. For instance, for n = 2 we get only one fourth of the image data, which

means substantial acceleration of the calculation usually without deterioration of

results accuracy.

. Border areas � In wide�eld camera images, valuable information forms a 'circle' in

the central part of the image. The rest in the border areas (especially in corners)

is not only useless, but even undesirable, because it can signi�cantly spoil the

line detection results (like parts of the telescope or buildings with lineal features).

An easy solution is to use a mask image to eliminate these areas. It is optional,

but a highly recommended step.

. Redundancy in brightness value resolution � The FITS images generated by the

BOOTES system (see 5.3) processed by Lúthien are 16-bit unsigned integers,

thus having value range of 0 - 65535. Usual 2-D greyscale images have only 256

levels, but astrophotographic images are very often of low contrast, using only

as little as one tenth or one twentieth of the brightness scale. Using histogram

equalization we get a high dynamic resolution image. Distribution of pixel values

in this wide range also simpli�es the segmentation.

Meteorite characteristics

. High brightness � Meteorites and stars are much brighter than the residual sky

background. This helps us immensely to segmentationally separate them as fore-

ground objects of interest. Even simple thresholding works in this case. Pre-

processing stages of the detection methods take advantage of this fact.

. Meteorite geometry � A meteorite (or its trail, to be more accurate) is basically

a bright line on dark sky background. Usually, there are no other lineal structures,

apart from man-made structures on the borders (and those can be eliminated

using a mask). Thus, the Standard Hough transform for lines (3.2.1) can be

used. Thinning does not change the overall shape of a line. A meteorite has

also some typical minimum thickness (erosion can help eliminate noise and small

stars), length (satellite tracks �ltration), and high elongatedness (in comparison

to, e.g., stars). During the detecion process, all of this additional knowledge is

used.

In following sections, the detection methods are presented in more detail. See also

Section A.4 for further information.
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4.4.1 Hough Transform Method

Probably the most accurate and robust of the three detection methods is the one

based on the Hough tranform. The input data is loaded, histogram equalization and

di�erence image computation are executed. At this moment, there are two possible

pipelines to process data for the core Hough transform.

The �rst one computes the Sobel edge detection 2.2.3.2, thresholds and dilates its

output to get a 'sobel mask image'. The original di�erence data is then thresholded and

masked with this sobel mask. Masking with a regular mask image is then (optionally)

applied. On the other hand, the second pipeline thresholds the di�erence data and

applies morphological operation closing (dilation followed by erosion, see 2.3) directly

on the binary result. The idea is to eliminate noise (like one pixel elements, the detected

line is thick enough not to dissappear). The dilation and erosion steps can be repeated

more times (see A.4.1). The histogram of di�erence data is not ideally bipolar, but the

brightness di�erence between the foreground (meteorites, stars) and background (dark

sky) is usually su�cient for choosing a good threshold value � then the second method

works well enough. But sometimes one of the input images is strongly a�ected (for

instance, by re�ectors of a car), causing too big di�erence in the input images. In such

cases, the �rst method performs much better, as it works with edge pixels instead of

image pixels.

The binary images prepared by the pre-processing and morphology stages are

thinned and passed to the core Standard Hough transform. It iterates through all points

(black points in the binary image in this case), computes the normal parametrization

values and accumulates them in so-called Hough space (3.2.1). One way to improve its

speed is to reduce number of processed points. Therefore, thinning creating a skeleton

is employed (2.3). Peaks are detected using the local maxima or (by default) butter�y

peak detection method described in [39].

Consequently, the detected lines are veri�ed. One reason for the time-ine�ciency of

common HT line veri�cation methods is that the accumulator itself does not provide

any information about the ending points of the line, only in which strip area the

feature points lie. Hence, every position within the strip area has to be checked,

or all feature points with the known θ are recalculated to get their ρ. Because in

most cases only a small part of the strip contains the feature points, neither way is

fast for a high-resolution image. The idea (presented in [71]) is to add a boundary

recorder to each parameter cell to record the minimum range containing the feature

points corresponding to the parameter. The boundary is actually represented by two

feature points, called low boundary and up boundary. According to Equation 3.1, one

dimension of the image coordinates can be calculated from another dimension. Thus,
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to save some memory, we only record one (x- or y-) dimension of the coordinates. The

choice depends on slope � in case 45◦ < ρ < 135◦, the line is nearly horizontal, so the

x-dimension coordinate is chosen to record the boundary. Otherwise, the y-dimension

coordinate is chosen. The initialization and recording algorithm in pseudocode is shown

in Algorithm 4.

Algorithm 4 Boundary recorder
1: Init:

Accumulator[theta][rho] = 0;

LowBoundary[theta][rho] = max(xMax, yMax);

UpBoundary[theta][rho] = max(xMin, yMin);

2: Recording: (point (x,y) contributing to parameter (theta, rho))
Accumulator[theta][rho] += 1;

if (45◦ < rho < 135◦) {

LowBoundary[theta][rho] = min(LowBoundary[theta][rho], point.x);

UpBoundary[theta][rho] = max(UpwBoundary[theta][rho], point.x);

} else {

LowBoundary[theta][rho] = min(LowBoundary[theta][rho], point.y);

UpBoundary[theta][rho] = max(UpwBoundary[theta][rho], point.y);

}

Two thresholds are used; minLength for the minimum acceptable line length and

maxGap for the maximum acceptable gap length. After the peak detection, all peaks

higher than minLength are taken and stored in a list in descending order of peak value

(number of votes). The line veri�cation begins from the head of the peak list. So, the

more important lines are processed sooner, the global peak being the �rst one. Using

the boundary recorder, we only need to analyze a small part of the original image

determined by the peak coordinates. The pixels of the veri�ed line segments are then

removed from the image, by setting their value from black to white. The boundary

points coordinates are calculated and the image pixels along the straightline connect-

ing these boundary points inspected. For that purpose the Bresenham algorithm for

straight line [77] is used. The algorithm detects all segments, which are longer than

minLength and do not contain gaps longer than maxGap.

Finally, the line �ltering stage �nds similar lines (in slope and intercept), throws

out duplicates and connects parts of the same line.

4.4.2 Edge Detection Method

The second detection method is based on the Canny edge detector technique. Again,

after the input data is loaded, histogram equalization and di�erence image computation

is executed. Masking with a mask image is then (optionally) applied.
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Edge detection using the Canny edge detector is performed (see Section 2.2.3.3).

The image is smoothed with a Gaussian mask to eliminate the noise. The larger the

width of the Gaussian mask, the lower the detector's sensitivity to noise. The edge

strength is found by taking the gradient of the image. The Sobel operator is used for

computation of gradient approximation. It uses a pair of 3× 3 convolution masks; one

for the gradient in the x-direction and the other for the gradient in the y-direction. The

magnitude of the gradient (edge strength) is then approximated using the Equation

2.4. Non-maximal suppression eliminates unimportant edge pixels. In the hysteresis

step, the initial segments of strong edges are found using the high threshold, while the

low threshold is used for edgel linking.

The data is then converted to binary representation, dilated and eroded using a 3×3

mask. Consequent blob detection stage searches for bright line-blobs of pixels using

simple �ll algorithm. Only blobs big enough, long enough, and with su�cient elongat-

edness are accepted. Parameters of the lines corresponding to the conforming blobs

are computed.

In the end, the line �ltering stage �nds similar lines (in slope and intercept), throws

out duplicates and connects parts of the same line.

4.4.3 Region Growing Method

The �nal detection technique is based on simple region growing. The input data is

loaded, histogram equalization and di�erence image computation is executed. Masking

with a mask image is then (optionally) applied and the data is thresholded.

The data is then converted to binary representation, dilated and eroded using a 3×3

mask to connect segments of the foreground structures and to close holes in them.

Blobs of bright star pixels are detected using simple region growing method. The

thresholded data gives us the seed pixels position. A neighbouring pixel is marked

as a part of the blob, if its brightness value is higher than a certain value depending

on the seed pixel value. Moreover, only line-blobs satisfying further conditions are

accepted � minimum pixel size, minimum Euclidean length and minimal elongatedness.

Parameters of the lines corresponding to the conforming blobs are computed.

Again, the line �ltering stage �nds similar lines (in slope and intercept), throws out

duplicates and connects parts of the same line.
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Chapter 5

Software and Hardware

Environment

5.1 FITS File Format

In the following paragraphs some basic facts about FITS �le format are presented, as

most of the astronomical data, as well as all input data for the Lúthien program, are

stored using just this �le format.

Flexible Image Transport System (abbrev. FITS ) is a data format designed to

provide a way to conveniently exchange astronomical data (not digital imagery only)

between systems with di�errent standard internal formats and hardware. It has become

the standard �le format used to store astronomical data �les. A FITS data �le contains

a sequence of Header Data Units (HDUs) of two basic types - images and tables. The

header consists of 'keyword=value' statements describing the organization of the data

in the HDU and the format of its contents. It may provide additional information,

e.g., about object being photographed, observer, exposure time, instrument status,

calibration, or the history of the data. The data itself follows, structured as the header

speci�ed. A single FITS �le may contain multiple images or tables. The �rst HDU

in a FITS �le has to be an image (but it may have zero axes), called primary array.

Any additional HDUs in the �le (which are also referred to as extensions) may contain

either an image or a table.

There are two subtypes of FITS tables: ASCII and binary. ASCII tables store the

data values in an ASCII representation, whereas binary tables store the data values in

a more e�cient binary format. Binary tables are generally more compact and support

more features (wider range of datatypes, vector columns, etc.) than ASCII tables.

FITS images typically contain a 2-dimensional array of pixels representing an image

of a part of the sky. But they can also contain 1-D arrays (a spectrum or light curve),
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or 3-D arrays (a data cube), or even arrays of data of higher dimension. An image may

also have zero dimensions. In that case it is referred to as a null or empty array. The

supported datatypes for the image arrays are 8-, 16-, and 32-bit integers, and 32- and

64-bit �oating point real numbers. Both signed and unsigned integers are supported.

The FITS images generated by the BOOTES system (see 5.3) processed by Lúthien

are 16-bit unsigned integers, with value range of 0 - 65535. Usual 2-D greyscale images

have only 256 levels, but astrophotographic images are very often of low contrast, using

only as little as one tenth or one twentieth of the brightness scale. Coding into 256

levels would cause unacceptable loss of information caused by quantization. Space

resolution of the tested input images was 4090 × 4090 pixels and 4098 × 4098 pixels.

Size of such FITS images is around 32 MBytes (or 20 MBytes as gzipped �les).

For further details about the FITS �le format, visit [73], [20] or [70].

5.1.1 FITS Software

FITS �le format is not very well known by ordinary users, as it is used mostly for

scienti�c purposes; software not designed for astronomy generally does not support

and accept FITS �les, not even for viewing.

Software for manipulating FITS �les can be divided into three main groups - li-

braries providing interface for various programming languages, editors and browsers /

viewers. Their most important representatives are shortly introduced in this section.

5.1.1.1 CFITSIO - A FITS File Subroutine Library

CFITSIO is a library of C and Fortran subroutines intended for reading and writing

data �les in FITS data format, providing high-level routines for reading and writing

FITS �les that insulate the programmer from the internal complexities of the format.

CFITSIO also provides many advanced features for manipulating and �ltering the

information in FITS �les. For documentation and other information, visit [20].

There are interfaces for calling CFITSIO from many programming languages avail-

able - C++ (CC�ts), C# and the .NET Platform (FitsLib), Perl (CFITSIO.pm), Tcl

(�tsTcl), Python (pCFITSIO), Ruby (RFits), S-lang (CFITSIO wrappers for the S-lang

programmer's library and interpreter) and MatLab (MFITSIO).

CC�ts is an object oriented interface to the CFITSIO library for the C++ language.

It is written in ANSI C++ and implemented using the C++ Standard Library with

namespaces, exception handling, and member template functions. The programmer

manipulates FITS objects simply by passing �lenames and lists of strings that repre-
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sent HDUs, keywords, image data and data columns. For additional information and

download, visit [8].

5.1.1.2 FTOOLS

FTOOLS is a general collection of over 200 ANSI Fortran or ANSI C utility programs,

Perl scripts and Tcl scripts designated to create, examine, or modify data �les in the

FITS format, including fverify (veri�es a �le conformance to the FITS Standard), fcopy

(selectively copies parts of FITS �le to a new �le) and ftlist (prints the contents of FITS

headers, images, and tables).

A graphical interface is available and users have the option of installing the entire

package with many high energy astrophysics speci�c routines, or just a core set that

contains only the routines to perform general operations on FITS �les. FTOOLS can

be built either as a set of stand-alone executable tasks or as a package within IRAF.

For more details and download source, visit [58].

5.1.1.3 FITSVERIFY - A FITS File Format Checker

The goal of the FITSVERIFY program is to verify the conformance to the standard

document of any FITS format disk data �le, checking keywords and data. FITSVER-

IFY is a stand-alone version of fverify distributed as a part of the FTOOLS software

package. FITSVERIFY is still under development, thus it may be unstable under

special circumstances.

The program is available as an executable binary �le for Solaris, Linux and Windows

platforms. The source code is also available for building on other platforms.

For further information, see [58].

5.1.1.4 Fv - An Interactive FITS File Editor

Fv is an easy-to-use general-purpose FITS �le graphical editor able to manipulate

virtually all aspects of a FITS �le and perform basic data analysis of its contents. The

fv software is small, completely self-contained or included as a standard part of the

FTOOLS distribution. It can be used with the DS9 image display (see next Section).

Fv displays images with pan and zoom, manipulates the color table, edits FITS

header keywords and data values, includes a summary window listing contents and size

of all extensions, produces line plots of the values in two or more columns of a FITS

table, with export to a PostScript �le available. It is currently supported on many

Unix platforms; Windows and Macintosh versions are under development.

For more details and download source, see [58].
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5.1.1.5 FITS Browsers & Viewers

SAOImage DS9 is an astronomical imaging and data visualization application. Cur-

rently it supports advanced features such as multiple frame bu�ers, mosaic images,

tiling, blinking, geometric markers, colormap manipulation, scaling, arbitrary zoom, ro-

tation, pan and a variety of coordinate systems, FTP and HTTP access. DS9 provides

tools for easy communication with external analysis tasks and is highly con�gurable

and extensible.

For more details about DS9 and download source, visit [2].

Other FITS browsers are the ESA/ESO/NASA Photoshop FITS Liberator for

Adobe Photoshop, ADC FITS Table Browser and NCSA FITS Browser, for viewing

purposes NRAO FITS viewers (FITSview, MacFITSView, XFITSview), MSI Windows

FITS viewer, SAO R&D Software Suite or netPBM can be used.

5.2 RTS2 Package

Lúthien takes advantage of Rts2Image class, as class L_Rts2Image is its successor. The

Rts2Image class is a part of the RTS2 library package, originally created by Mgr. Petr

Kubánek (the advisor of this work) as his diploma thesis. In this section we will provide

some more information about this package.

Remote Telescope System, 2nd Version (abbrev. RTS2 ) is an integrated software

package designed for full robotic automatization of astronomical observations. The

system takes care of the whole image acquisition process, beginning with target selec-

tion from a database, ending with processing of acquired images while allowing certain

level of user control (ranging from simple on-o�-standby regimes to more advanced

scripting). At the moment, �ve telescopes on three continents are controlled by the

system, e.g., the BOOTES system (see Section 5.3). At the beginning, the RTS2 was

intended to control telescopes dedicated to observe optical opposites of gamma-bursts.

Gradually, it has become a much more general system for controlling robotic telescopes.

One of the biggest advantages of the program is the full remote control via SSH pro-

tocol. Various commands like setting enviroment variables, system upgrades, viewing

system logs and image manipulation (to name a few) can be executed using virtually

any computer with internet connection.

The RTS2 runs on Linux platform - primarily developed for Debian, but installed

on RedHat and SuSE distributions as well, without any apparent problems. No serious

di�culties when getting it to work for other major *nix distributions are expected.

Other important features of RTS2 are, e.g., integrated on-line astrometry using

either astrometry.net package or any other command-line astrometry package, target
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creating from SIMBAD (�xed position target), gamma-ray bursts alerts processing

module, script-driven GRB observation, usage of PostgreSQL database to store ob-

servation details, ncurses based monitoring (rts2-mon), priority-function (selector),

planned (night schedule), manual (from rts2-mon) and urgent (GRBs) observations.

The package is still under development and the authors plan to add many new features

in the near future.

For more information, see [42, 18, 67].

5.3 Bootes

According to [29], there are at least four major �elds of recent and future activities of

the High Energy Astrophysics Group at the Astronomical Institute of the Academy of

Sciences of the Czech Republic in the wide��eld sky imaging and sky monitoring. First,

optical monitoring and analyses of selected targets with robotic telescopes � BART,

BOOTES, SUPER�BART, BOOTES�IR. Analyses of archival sky patrol plates come

second, the third goal being the satellite experiments: INTEGRAL OMC, LOBSTER

and �nally, CCD sky monitoring as long term analyses.

The valuable and unique scienti�c information recorded by the telescope systems

BART and BOOTES is not yet fully taken advantage of. By developing new analysis

software, such as Lúthien, we are trying to get closer to this goal.

Lúthien was originally created to process astrographic images created by BOOTES,

a robotic telescope system used for optical monitoring and analyses of selected targets.

It is a result of Spanish�Czech (IAA-CSIC, Granada - AsÚ AV �R Ond°ejov) cooper-

ation, located in Spain (one at the Observatory de Sierra Nevada in the Sierra Nevada

mountains, approx. 2890 m above the sea level). The fully automated telescopes use

various CCDs. At the moment, the most advanced telescope is BOOTES-IR (60 cm

aperture, near Veleta peak, Sierra Nevada range).

The BART and BOOTES systems have been developed for a number of purposes -

automatic GRB follow�up observations, monitoring and photometry of selected triggers

(mostly blazars, QSOs, AGNs and selected binary galactic sources) and testing of newly

developed software (with astronomy and computer science students involved).

For further information about BART and BOOTES systems, see [18, 29].
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Chapter 6

Testing Results

This chapter summarizes experimental testing carried out in order to compare the

detection alorithms implemented in the Lúthien software package. The results are

interpreted according to the initial problem speci�cation (see Section 1.2).

Testing Environment

. Hardware con�guration: notebook PC, 2-GHz Intel Pentium Core Duo processor,

2 GB of RAM.

. Software con�guration: Kubuntu 7.04 x86, kernel version 2.6.20, RTS2 library �

ver. 0_5_0, libnova-0.12.1, CFITSIO library 3.040 and ImageMagick library of

version 6.3.5.

. Tested images: 07_20070728034400.fits, 07_20070728034600.fits,

10_20060606023900.fits, 10_20060606024000.fits and complete image se-

quence

20061118193419.fits � 20061118231730.fits (70 images in total).

The testing script consisted of following commands (one for each method):

$ ./luthien {-t 1|-t 2|-e|-r} -n 2 -i IN1.fits:IN2.fits

-m mask6_vector.png

The software was tested using real input images taken by the BOOTES system in

Spain, Sierra Nevada. The results were measured under the same circumstances and

con�guration settings. The input images were analyzed in pairs, in sequence identical

to the one they were taken in by a camera (all the pictures were taken by single camera).

However, some of them were a�ected by wrong camera con�guration (dark images

of very low contrast), in few cases substantial di�erence between two images in a pair
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was apparent. This di�erence was caused by special conditions, for instance, a car

passing by (one image brightened by car re�ectors); one image has been even taken

while the roof of the observatory was still closed. The deteriorating impact of this

divergence made the detection often di�cult, mostly resulting in a number of false

positives, or assignment of a detected line to the other image of the pair (at correct

location). But in many cases, the detection didn't fail inspite of the obstructions.

Thus, in the results summary two cases for each detection method are presented

� one for error-free images and one taking all the images into consideration. The

results measured for the implemented detection methods are presented in Table 6.1.

'ED' stands for edge detection method, 'HT1' and 'HT2' are the two Hough transform

pipelines and 'RG' denotes the region growing method.

Meteorites (8 / 13*) Images (7 / 11*) Runs (6 / 8*)
found % found % found %

ED 6 / 8* 75 / 61.5* 6 / 8* 86 / 73* 5 / 6* 83 / 75*
HT1 6 / 7* 75 / 54* 6 / 7* 86 / 64* 5 / 6* 83 / 75*
HT2 6 / 8* 75 / 61.5* 6 / 8* 86 / 73* 5 / 6* 83 / 75*
RG 6 / 9* 75 / 69* 6 / 8* 86 / 73* 5 / 6* 83 / 75*

Table 6.1: Detection results. Asterisk * denotes results with corrupted images taken into

consideration.

All of the presented detection methods seem to return very similar results, in almost

all cases �nding the same meteorite trails. The �rst column presents the detection

e�ciency � number of meteorites found manually to number of trails detected by the

program ratio. The second column brings the same information about the number of

images containing meteorites; the third column analyzes whole runs ('run' meaning one

program analysis of a pair of images). We can see that all methods achieved accuracy

of around 75% in detecting meteorites and are able to �nd approximately 85% of all

interesting images (those containing at least one meteorite). Assuming that all the

'marked' images will be re-checked by a human operator, the latter percentage is of

more importance.

Failure to detect some of the meteorites has various reasons. Already mentioned

'di�erence corruption' causes problems especially for the region growing method, as

false seed points are created. The principle step of Hough transform is peak detection

in the parameter space. Thus, weaker lines can sometimes be missed because of a much

stronger response to another line (again, this is not a real problem, since the image

is marked as interesting anyway). In other cases it takes more time to �nd the right

program settings.

43



Besides �nding the correct images with meteorite trails, low count of found false

positives is fundamental. Table 6.2 tell us that the ratio of false alarms number to all

runs number is as low as 3% or even less, when using error-free images. Even under

special circumstances, edge detection and Hough transform type 1 work best, having

almost no false positives. On the other hand, region growing and the second type of

Hough tranform generate a false detection every tenth run. But this number falls to

zero drastically as soon as we take into account only non-corrupted pictures.

False positives in total
total images total runs false alarm runs % of all runs

ED 0 / 0* 0 / 0* 0 / 0* 0 / 0*
HT1 0 / 1* 0 / 1* 0 / 1* 0 / 2.9*
HT2 1 / 9* 1 / 6* 1 / 4* 2.9 / 11.4*
RG 0 / 7* 0 / 6* 0 / 3* 0 / 8.5*

Table 6.2: False positives detection rate comparison. Asterisk * denotes results with cor-

rupted images taken into consideration.

Speed of the program was one of the most important speci�cation requirements.

Table 6.3 shows information about time complexity of the tested methods. Obviously,

all of them proved to be fast enough for real-world, practical use. The region growing

method is statistically the fastest one (only 2.55 seconds in average), followed closely

by Hough transform and more time-demanding edge detection. In general, none of the

methods takes more than 10 to 12 seconds to run. Considering this fact, possibility

of running more than one test for every pair seems to be realistic. Moreover, as we

always analyze two images at a time, we actually can use two time-windows for our

image processing, instead of one. And the more di�erent methods used, the more

accurate the results.

Detection Time / Full Time (including loading data) [in sec.]
minimum maximum average

ED 9.35 / 11.61 9.72 / 12.07 9.50 / 11.81
HT1 4.33 / 6.44 6.64 / 8.82 4.91 / 7.06
HT2 3.39 / 5.66 11.62 / 13.92 6.56 / 8.87
RG 2.35 / 4.65 3.64 / 5.90 2.55 / 4.86

Table 6.3: Detection methods speed comparison.

The target hardware for Lúthien is a 2-GHz Intel Pentium Quadro-core desktop PC

with 2 GB of RAM (and possibility of further upgrades), which makes it more e�cient

than the testing con�guration. Thus, even higher speed of the program is expected.
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The time complexity comparison with complete information about all 35 program

runs si presented in Figure 6.1.

Figure 6.1: Time complexity comparison of the detection methods. For each method times of the

detection process itself (e.g., ED) and times including the input data loading (e.g., ED (full)) are

available.

All in all, none of the methods is an obvious winner. Region growing and type 2

Hough transform are very fast, but false positives can (in special cases) cause trouble.

Slowlier edge detection and type 2 Hough transform seem to be more robust when

dealing with corrupted images. Cooperation of more than one method could be a good

solution. However, each of them is successful enough to be an alternative to the

others. This possibility to choose from various image processing approaches is de�nitely

an advantage of the Lúthien package.
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6.1 Examples

In this section, three examples of typical input image processing with temporary results

are presented. The original �les are high-resolution and, as a matter of fact, only a small

part of them is interesting. Therefore, for each step in the process only a cutout (at

the same position) is shown. The full-sized �les can be found on the enclosed CD-

ROM in the test_fits/ (input files) and output_fits/ (output �les) directories.

The output images are named l_XY_NUM_NAME_.png, where XY denotes the detection

method used ('HT' for Hough transform, 'RG' for region growing and 'ED' for edge

detection), NUM is its serial number and NAME gives further stage description.

Some of the images are inverted for the sake of better readability.

6.1.1 Hough transform method example

Input �les: 20061118222705.fits and 20061118222837.fits. Command used:

$ ./luthien -t 1 -n 2 -i test_fits/20061118222705.fits

:test_fits/20061118222837.fits

-o output_fits/HT1_res1.png:output_fits/HT1_res2.png

-m img/mask6_vector.png -v

(a) (b) (c)

Figure 6.2: Hough transform method: (a) original image #1, (b) original image #2,
(c) di�erence image.
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(d) (e) (f)

Figure 6.3: Hough transform method: (d) thresholded di�erence image, (e) Sobel edge
detector applied on the original di�erence image (see (c)) , (f) thresholded Sobel image.

(g) (h) (i)

Figure 6.4: Hough transform method: (g) dilated Sobel image, (h) thresholded di�er-
ence image (see (d)) masked out by dilated Sobel image (see (g)), (i) thinning result.

(a) (b)

Figure 6.5: Hough transform method. (a) the accumulator array with peak marked,
(b) the output image with a found line segment, coloured in black.
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6.1.2 Edge detection method example

Input �les: 10_20060606023900.fits and 10_20060606024000.fits. Command used:

$ ./luthien -e -n 2 -i test_fits/10_20060606023900.fits

:test_fits/10_20060606024000.fits

-o output_fits/ED_res1.png:output_fits/ED_res2.png

-m img/mask6_vector.png -v

(a) (b) (c)

Figure 6.6: Edge detection method: (a) original image #1, (b) original image #2,
(c) di�erence image.

(d) (e) (f)

Figure 6.7: Edge detection method - Canny: (d) Gauss �ltration in x-direction,
(e) Gauss �ltration in y-direction, (f) gradient magnitude in x-direction.
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(g) (h) (i)

Figure 6.8: Edge detection method - Canny: (g) gradient magnitude in y-direction,
(h) non-maximal suppression result, (i) thresholding with hysteresis applied.

(j) (k) (l)

Figure 6.9: Edge detection method: (a) edge pixels thresholded, (b) morphological
dilation, (c) morphological erosion.

Figure 6.10: Edge detection method: the output image with found line segments,
coloured in black.
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6.1.3 Region growing method example

Input �les: 07_20070728034400.fits and 07_20070728034600.fits. Command used:

$ ./luthien -r -n 2 -i test_fits/07_20070728034400.fits

:test_fits/07_20070728034600.fits

-o output_fits/RG_res1.png:output_fits/RG_res2.png

-m img/mask6_vector.png -v

`

(a) (b) (c)

Figure 6.11: Region growing method: (a) original image #1, (b) original image #2,
(c) di�erence image.

(d) (e) (f)

Figure 6.12: Region growing method:(d) threshold, (e) morphological dilation, (f) mor-
phological erosion.
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(g) (h)

Figure 6.13: Region growing method:(g) blobs accepted in �ltration stage, (h) the
output image with a found line segment, coloured in black.
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Chapter 7

Conclusion

The aim of this work was to create a meteorite detecting software tool able to process

large-sized astrography FITS images created by a camera of BOOTES system and

prove its applicability in real-world scenarios.

In the theoretical part of this thesis basic de�nitions and various image-processing

techniques were presented, with more accent put on the approaches suitable for prac-

tical implementation. The reader was introduced into problematics of image pre-

processing and morphological operations. Following part focused directly on line de-

tection methods, especially the Hough transform and the Canny edge detection. Fun-

damental information about the FITS �le format, the BOOTES telescope management

system and the RTS2 library was discussed.

Description of the chosen algorithms is given in the practical part. Three di�erent

approaches were implemented � two based on (already mentioned) Hough transform

and Canny detector, the third one uses a simple region growing segmentation. User's

and developer's manual along with the generated documentation should provide a

simple way to understanding, extending or patching the package source code. Exper-

imental testing proved that (after some settings adjustment) all of the methods can

be quite successful and their practical use is possible. Speed of the solutions allows

multiple testing for each image pair.

The road to the end of the work has been long and thorny. Some decisions were

made right, others were not and should have been reconsidered. When looking back,

I naturally see a lot of things that could have been done otherwise, better. But that is

the story of every human creation. On the other hand, this thesis gave me an excellent

opportunity (and a good reason) to revise my long forgotten C language skills; I had to

practically implement some of the algorithms I have only read about before. Writing

such a large-scale text is de�nitely a good experience, as well.

I believe the program is extensible enough to make future feature addition possible
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and easy. For instance, I could think of a graphical user interface for program set-

tings setup, adding some kind of line width detection algorithm, parallelization of the

program run to utilize multi-processor computers, etc.. Ability to reliably distinguish

between meteorites and trails made by planes or satellites is a big challenge, too.
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Appendix A

Lúthien - User's Manual

Lúthien is an integrated software package designated to process high-resolution wide-

�eld FITS images in order to detect meteorite trails. This appendix is a user's manual

for version 1.0 of the package.

Author

Igor Gombo²

Feedback

Please direct any comments or suggestions about this document to:

luthien.project@gmail.com.

Acknowledgements

This documentation was created in LATEX (http://www.latex-project.org/) using

the LYX document processor (http://www.lyx.org/) .

Version

First edition. Published 14 December 2007.
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A.1 What is Lúthien?

Lúthien is an integrated software package designated to process high-resolution wide-

�eld FITS images in order to detect meteorite trails. It implements three di�erent

detection methods based on the Hough transform, simple region growing and Canny

edge detector.

It was developed in C++ programming language and runs on Linux platform. The

software uses fragments of the RTS2 library package, software package designed for full

robotic automatization of astronomical observations, created by Mgr. Petr Kubánek

(for further details, see Section 5.2).

The detector's output can be saved as images of various formats. For image output

the ImageMagick library routines are employed.

A.2 Minimum Requirements

The RTS2 software package and ImageMagick library (see Section C.2) have to be

installed on the system. The CFITSIO library for FITS �les manipulation (see Sec-

tion 5.1.1.1) is also necessary.

The actual version of Lúthien has been tested on a 2-GHz Intel Pentium Core Duo

notebook PC with 2 gigabytes of RAM. However, it is not necessary to use a high-

performance system. For large-scaled FITS images processing the only real requirement

is su�cient amount of the available operating memory � at least 1 gigabyte of RAM

memory is recommended.

The software runs on Linux platform - primarily developed under (K)Ubuntu 7.04,

a free, Debian derived Linux-based operating system. It should also run on other major

*nix distributions �awlessly.

A.3 Distribution Information

The software distribution can be found on the enclosed CD-ROM. Following listing

shows the content of the distribution:

. thesis.pdf � Electronic version of this document.

. prog/src/ � Directory containing the actual implementation of the Lúthien soft-

ware package.

. prog/dependencies/ � Directory containing necessary software dependencies

distributions - RTS2 library, CFITSIO, libnova and ImageMagick.
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. output_fits/ � Directory for the output of the software.

. test_fits/ � Directory containing example input data.

. documentation/ � Directory containing Lúthien documentation generated from

code comments using Doxygen and CVS development statistics generated by

StatCVS.

. INSTALL � Text �le containing the installation instructions.

. README � Text �le containing the notes on how to use the software.

A.4 Running Lúthien

The input of the Lúthien application is an image pair of two consequent FITS �les of

the same size, and various parameters. The output is a list of detected lines in the

input images and, optionally, input images with detected lines positions marked. The

following section presents the software options and shows some examples of usage.

The console command to run the program is as follows

$ luthien {-t TYPE|-e|-r} -i IN1:IN2 [-o OUT1[:OUT2]]

[-m MASK] [-n NUM] [-v]

. TYPE � type of the HT pre-processing pipeline (possible values 1 and 2). First

one analyzes egdels (detected by Sobel detector), the latter analyzes the image

data itself.

. IN1, IN2 � The input image names including paths. Both images have to be

FITS �les (including image data HDU) of the same size dimensions. It is crucial

that the processed input images were taken in a small time window, as one of the

basic ideas in Lúthien implementation is to compute their pixel-by-pixel di�erence

image.

. OUT1, OUT2 � The output image names including paths. The detected lines will be

drawn on the input images background. In case only one output name is speci�ed,

all the detected lines are will be drawn on the �rst input image background.

. MASK � The mask image name including path. The mask cannot be of resolution

smaller than the input images.

. NUM � The o�set for input images data loading. Default value is '1 '.

56



The detection method speci�cation and the input �lenames are obligatory.

If the output �lenames are speci�ed, the result will be saved as images of the given

type. For image conversion the ImageMagick library is used (also IM, see Section C.2).

Thus, all the output image formats supported by IM are available, including DPX,

EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and TIFF.

In case the mask image name is speci�ed, the input images will be masked using

the mask image data and operation of multiplication. Hence, mask has typically pixels

of two brightness values � zeroes at positions to be masked out, and 1's at positions

where the actual processed data lies. The mask cannot be of resolution smaller than

the input images. Again, the mask �le can be of any image format supported by IM.

As the border areas of astrography images often contain details disturbing the line

detection, it is highly recommended to mask them out.

Use the '-n' option, if you want to open the FITS �les in a special opening mode,

when only every NUM-th pixel is loaded. This may result in great computational and

memory savings. On the other hand, the detection may not yield correct results.

Recommended value is '1' (default value) or '2'.

The full list of options with brief desription:

Option Description

-help | --help Get a complete list of options.

-i IN1:IN2 Names of two input images separated by ':'.

-o OUT1[:OUT2] Save output to the image �le(s) with name(s) OUT1 and

OUT2 (including extension). In case only one name is

speci�ed, all the detected lines are saved using the �rst

input image as background. [optional ]

-m MASK Use masking with a mask with name MASK. [optional ]

-t TYPE Use the Hough transform method for line detection.

TYPE speci�es one of two pre-processing pipelines

(possible values '1' and '2').

-e Use the edge detection method for line detection.

-r Use the region growing method for line detection. One of

the detection methods has to be speci�ed.

-n NUM Set the o�set for input images data loading to NUM.

Default value is '1'. [optional ]

-v Verbose text output.

Examples of use
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This command takes image �les A.fits and B.fits from directory img and analyzes

the image data using the edge detection method:

$ ./luthien -e -i img/A.fits:img/B.fits

The following command takes image �les A.fits and B.fits from directory img,

loads every second pixel of them, masks the data with mask.png, analyzes the data

using the Hough transform method and saves the results in directory img_out as

A_HT.png and B_HT.png:

$ ./luthien -t 2 -n 2 -i img/A.fits:img/B.fits

-o img_out/A_HT.png:img_out/B_HT.png -m mask.png

To see brief help and option usage, use:

$ ./luthien -help

A.4.1 Con�guration File

The astrographic images processed by Lúthien can vary in many aspects and so do

the desired results of the detection method. To achieve higher �exibility of used de-

tection approaches, a number of important program constants is con�gurable in the

config.cfg text �le. Setting these constants according to the actual conditions may

considerably improve quality of the output. Their summary including description is

presented in this section.

The overall settings used by more than one detection method are as follows

�tsLoadIncStepX � O�set for loading image data from a FITS �le in the x-direction.

Default value: 2.

�tsLoadIncStepY � O�set for loading image data from a FITS �le in the y-direction.

Default value: 2.

lineMinPixelLength � Minimum length of detected line. Default value: 75.

linesNoMax � Maximum number of returned detected lines. Default value: 30.

drawLinesNoMax � Maximum number of detected lines drawn in the output images.

Default value: 10.

blobElongatednessComputeStepsNo � Number of rotation steps for blob elongat-

edness computation. Default value: 20.
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maxPixelValue � Maximum pixel brightness value in the image. Default value:

65535.

modeSaveTempImages � True if temporary results should be saved as images to

disc. Default value: false.

The Hough transform method -related settings are

HTpreprocessThresholdRatio The threshold for image preprocessing stage in HT

method is computed as (imageMaxValue * HTpreprocessThresholdRatio). De-

fault value: 0.4.

HTsobelThreshold � Threshold for �ltering of Sobel edge detector results. Default

value: 0.3.

HTdilateIterationsNo � Number of dilation iterations in the morphology stage of HT

method. Default value: 1.

HTdilateMaskSize � (HTdilateMaskSize x HTdilateMaskSize) is the the size of

a square dilation structuring element. Default value: 3.

HTerodeIterationsNo � Number of erosion iterations in the morphology stage of HT

method. Default value: 1.

HTerodeMaskSize � (HTerodeMaskSize x HTerodeMaskSize) is the size of a square

erosion structuring element. Default value: 3.

HTlineThickness � Approximate thickness of lines detected. Used for Hough space

accumulator resolution computation. Default value: 10.

HTlineMaxGap � Maximum line gap for the line verify stage of HT method. Default

value: 5.

HTpeaksThresholdSensitivityFactor � The threshold for peak detection is (sqrt

{number of black pixels} * HTPeaksThresholdSensitivityFactor

/ FitsLoadIncStepX). Default value: 15.

HTpeaksThresholdMin � Minimum number of votes for a peak to be accepted in

the peak detection stage. Default value: 100.

HTpeaksThresholdMaxSteps � Maximum number of peak detection iterations.

Default value: 10.

The region growing method -related settings are
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RGpreprocessThresholdRatio The threshold for image preprocessing stage in RG

method is computed as (imageMaxValue * RGpreprocessThresholdRatio). De-

fault value: 0.6.

RGforegroundThresholdAddTolerance � Minimum brightness value for a pixel to

become part of a blob is (blob seed pixel value

- foregroundThresholdTolerance) (�rst of the conditions). Default value:

20 000.

RGforegroundThresholdMin � Minimum brightness value for a pixel to become

part of a blob is (max pixel value * foregroundThresholdAbsMin) (second

of the conditions). Default value: 0.45.

RGblobMinLength � Minimum length (in pixels) of a blob to be accepted in the

blob verify stage. Default value: 40.

RGblobMinElongatedness � Minimum elongatedness of a blob to be accepted in

the blob verify stage. Default value: 4.5.

RGblobMinSize � Minimum size (in pixels) of a blob to be accepted in the blob

verify stage. Default value: 200.

RGblobMaxSize � Maximum size (in pixels) of a blob to be accepted in the blob

verify stage. Default value: 15000.

The edge detection method -related settings are

EDcannyLowThreshold � Low hysteresis threshold for the Canny edge detector.

Default value: 0.2.

EDcannyHighThreshold � High hysteresis threshold for the Canny edge detector.

Default value: 0.6.

EDblobMinSize � Minimum size (in pixels) of a blob to be accepted in the blob

verify stage. Default value: 200.

A.4.2 Using Hough Transform Method

Probably the most accurate and robust of the three detection methods is the one based

on the Hough tranform. This section presents the procedure in more detail and shows

which constants (contained in the con�guration �le, see Section A.4.1) to tweak to get

the desired detection results. The HT image processing pipeline is designed as follows:
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1. Input images data is loaded � use option '-n NUM' to take only every NUM-th pixel

or specify variables fitsLoadIncStepX and fitsLoadIncStepY to do the same

in the x-and y-direction, respectively.

2. The data is equalized and composed using subtract operation into one data array.

3. At this moment, there are two possible pipelines to choose from. The �rst

one computes the Sobel edge detection, thresholds and dilates its output (using

a square structuring element of size (HTdilateMaskSize

x HTdilateMaskSize)) to get a 'sobel mask image'. The original di�erence data

is thresholded and masked with this sobel mask. The regular mask image is

then (optionally) applied. The second pipeline masks out and thresholds the

di�erence image. In the morphology stage, the data is converted to binary and

inverted. Dilation with a square structuring element of size (HTdilateMaskSize

x HTdilateMaskSize) is performed HTdilateIterationsNo times. Erosion with

a square structuring element of size (HTerodeMaskSize x HTerodeMaskSize) is

performed HTerodeIterationsNo times. The histogram of di�erence data is not

ideally bipolar, but the brightness di�erence between the foreground (meteorites,

stars) and background (dark sky) is usually su�cient for choosing a good thresh-

old value � then the second method works well enough. But sometimes one of

the input images is strongly a�ected (for instance, by re�ectors of a car), causing

too big di�erence in the input images. In such cases, the �rst method performs

much better.

4. The result data is thinned.

5. The Standard Hough transform follows. The quantization of the parameter space

(and hence, the overall accuracy) depends on the HTlineThickness constant.

Maximum number of detected lines is given by linesNoMax.

6. The initial peak detection threshold (means minimum number of votes for a line

to be accepted) is determined by HTPeaksThresholdSensitivityFactor and

HTPeaksThresholdMin. The peak detection is repeated until a desired number of

peaks is detected (less than linesNoMax), but maximum of

HTPeaksThresholdMaxSteps times.

7. Consequently, the detected lines are veri�ed. Only a line of Euclidean length of

lineMinPixelLength pixels (or more) is accepted. For robustness, gaps shorter

than HTLineMaxGap do not disrupt a line.
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8. The line �ltering stage then �nds similar lines (in slope and intercept), throws

out duplicates and connects parts of the same line.

9. In the �nal (optional) step, the found lines are drawn on the original input data

and the result images are saved (the output �lenames are set using option '-o').

A typical command to use the Hough tranform method would look like this

$ ./luthien -t 1 -n 2 -i img/A.fits:img/B.fits

-o img_out/A_HT.png:img_out/B_HT.png -m mask.png

The program takes image �les A.fits and B.fits from directory img, loads every

second pixel of them, masks the data with mask.png, analyzes the data using the

Hough transform method and saves the results in directory img_out as A_HT.png and

B_HT.png.

A.4.3 Using Edge Detection Method

The second detection pipeline is based on the Canny edge detector technique. This

section presents the procedure in more detail and shows which constants (contained in

the con�guration �le, see Section A.4.1) to tweak to get the desired detection results.

The edge detection method (ED) looks as follows:

1. Input images data is loaded � use option '-n NUM' to take only every NUM-th pixel

or specify variables fitsLoadIncStepX and fitsLoadIncStepY to do the same

in the x-and y-direction, respectively.

2. The data is equalized, composed using subtract operation into one data array

and masked out (optional step - see option '-m').

3. Edge detection using the Canny edge detector is performed. The low and high

threshold values for the hysteresis step are determined by EDcannyLowThreshold

and EDcannyHighThreshold.

4. In the morphology stage the data is converted to binary and inverted. Dilation

with a square structuring element of size (HTdilateMaskSize

x HTdilateMaskSize) is performed. Erosion with a square structuring element

of size (HTerodeMaskSize x HTerodeMaskSize) is performed.

5. Blobs of bright pixels are detected using simple �ood-�ll algorithm. Only blobs

satisfying given conditions are accepted � minimum pixel size at least
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EDblobMinSize pixels, minimum Euclidean length of the blob at least

RGblobMinLength and minimal elongatedness of RGblobMinElongatedness or

more.

6. The line �ltering stage then �nds similar lines (in slope and intercept), throws

out duplicates and connects parts of the same line.

7. In the �nal (optional) step, the found lines are drawn on the original input data

and the result images are saved (the output �lenames are set using option '-o').

A typical command to use the Hough tranform method would look like this

$ ./luthien -e -n 2 -i img/A.fits:img/B.fits

-o img_out/A_HT.png:img_out/B_HT.png -m mask.png

The program takes image �les A.fits and B.fits from directory img, loads every

second pixel of them, masks the data with mask.png, analyzes the data using the ED

method and saves the results in directory img_out as A_HT.png and B_HT.png.

A.4.4 Using Region Growing Method

The �nal detection technique is based on simple region growing. This section presents

the procedure in more detail and shows which constants (contained in the con�guration

�le, see Section A.4.1) to tweak to get the desired detection results. The region growing

method (RG) looks as follows:

1. Input images data is loaded � use option '-n NUM' to take only every NUM-th pixel

or specify variables fitsLoadIncStepX and fitsLoadIncStepY to do the same

in the x-and y-direction, respectively.

2. The data is equalized, composed using subtract operation into one data ar-

ray, masked out (optional step - see option '-m') and thresholded (see constant

RGpreprocessThresholdRatio).

3. In the morphology stage the data is converted to binary and inverted. Dilation

with a square structuring element of size (HTdilateMaskSize

x HTdilateMaskSize) is performed. Erosion with a square structuring element

of size (HTerodeMaskSize x HTerodeMaskSize) is performed.

4. Blobs of bright star pixels are detected using simple region growing method.

The thresholded data gives us the seed pixels position. A neighbouring pixel
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is marked as a part of the blob, if its brightness value is higher than (max

pixel value * RGforegroundThresholdMin) and not lower than (seed value

- foregroundThresholdTolerance). Moreover, only blobs satisfying further

conditions are accepted � minimum pixel size at least RGblobMinSize pixels,

minimum Euclidean length of the blob at least RGblobMinLength and minimal

elongatedness of RGblobMinElongatedness or more.

5. The line �ltering stage then �nds similar lines (in slope and intercept), throws

out duplicates and connects parts of the same line.

6. In the �nal (optional) step, the found lines are drawn on the original input data

and the result images are saved (the output �lenames are set using option '-o').

A typical command to use the Hough tranform method would look like this

$ ./luthien -r -n 2 -i img/A.fits:img/B.fits

-o img_out/A_HT.png:img_out/B_HT.png -m mask.png

The program takes image �les A.fits and B.fits from directory img, loads every

second pixel of them, masks the data with mask.png, analyzes the data using the RG

method and saves the results in directory img_out as A_HT.png and B_HT.png.
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Appendix B

Lúthien - Developer's Manual

Lúthien is an integrated software package designated to process high-resolution wide-

�eld FITS images in order to detect meteorite trails. This appendix is a developer's

manual for version 1.0 of the package.

Author

Igor Gombo²

Feedback

Please direct any comments or suggestions about this document to:

luthien.project@gmail.com.

Acknowledgements

This documentation was created in LATEX (http://www.latex-project.org/) using

the LYX document processor (http://www.lyx.org/) .

Version

First edition. Published 14 December 2007.

Related documentation

User's Manual to the Lúthien software package supplied as part of the distribution.
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B.1 What is Lúthien?

Lúthien is an integrated software package designated to process high-resolution wide-

�eld FITS images in order to detect meteorite trails. It implements three di�erent

detection methods based on the Hough transform, simple region growing and Canny

edge detector.

It was developed in C++ programming language and runs on Linux platform. The

software uses fragments of the RTS2 library package, software package designed for full

robotic automatization of astronomical observations, created by Mgr. Petr Kubánek

(for further details, see Section 5.2).

The detector's output can be saved as images of various formats. For image output,

the ImageMagick library routines are employed.

It is strongly recommended to get familiar with the Lúthien User's Manual, as

well. Not all of the user-related information is part of this document, as it is highly

redundant.

B.2 Documentation Guidelines

For code documentation purposes, we decided to use a documentation generation sys-

tem Doxygen. An on-line documentation (in HTML) and an o�-line reference manual

(in LATEX) was generated from the documented source �les of the project. There is

also support for generating output in RTF (MS-Word), PostScript, hyperlinked PDF,

compressed HTML, and Unix man pages.

The documentation is extracted directly from the sources. Hence, it is easy to keep

the documentation consistent with the source code. In Doxygen, there are several ways

to mark a comment block � JavaDoc style, Qt style, using C++ comment lines, etc.

We decided to use the JavaDoc style which consists of a C-style comment block starting

with two *'s, like this

/**

* Brief description ending at first at this dot.

* More detailed description follows here.

* @param a an integer argument.

* @param s a constant character pointer.

* @see Test()

* @see publicVar()
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* @return The test results

*/

To document members of a �le, struct, union, class, or enum, it is sometimes desired

to place the documentation block after the member instead of before. It then looks

like this

TVal1, /**< enum value TVal1. */

For more information about Doxygen, see [16].

B.3 Coding Guidelines

To keep the code well-arranged and readable, it is desirable to follow some coding stan-

dard. We decided to get inspired by a list of C++ coding recommendations common

in the C++ development community located at [25].

The recommendations are based on established standards collected from a number

of sources, individual experience, local needs, as well as suggestions.

Source code should always be considered larger than the IDE it is developed within

and should be written in a way that maximizes its readability independently on any

particular IDE.

The list deals with general recommendations, naming conventions, statements, lay-

out and comments, etc. It is strongly recommended to be aware of them and to use

them where possible.

B.4 Components

The source code of Lúthien can be divided into three logical groups:

. Algorithms � Implementation of the algorithmic part of the package � various

detection methods (Hough transform, Canny edge detection, simple region grow-

ing), basic image enhancement routines, morphological and segmentation tech-

niques. The source code is located in the prog/src/algorithms/ directory.

. Geometry � Implementation of the supporting geometric 2-D primitives and their

manipulation methods � point and parameter, line, blob, etc. The source code is

located in the prog/src/geometry/ directory.
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. Other � General purpose code of con�guration settings management, timer for

time complexity measurement, C++ macros, central image data management,

application main function, etc. The source code is located in the prog/src/

directory.

These groups will now be discussed in further detail in the following section.

B.5 Code Reference

This section is rather an overview of the methods and their location, not an exhaustive

description of every source code line. For further information, see the documenta-

tion generated by Doxygen and the commented code itself which are both part of the

distribution.

Algorithms

. methodHough.h + .cc, methodEdgeDetection.h + .cc,

methodRegionGrowing.h + .cc � Include functions implementing the three de-

tection methods of Lúthien. In general, they can be divided into certain stages,

namely loading data, preprocessing stage, morphology stage, core detection, line

�ltration and image saving.

. hough_sht.h + .cc � Implementation of the Standard Hough transform, as de-

scribed in [17]. Normal line parametrization is used. Included function

verifyLines �lters the previously detected lines based on some conditions (min-

imal length, gap).

. houghSpace.h + .cc � Class L_HoughSpace for a 2-D Hough space (accumulator

array) for HT line detection. Methods for memory allocation, cell incrementation

(incrementAccum), quantization computation (computeQuantization) are sup-

plied. findLines detects peaks in the accumulator array using local maxima or

butter�y method, computeLineParameters �nds line parameters (starting and

ending point, votes number, etc.) .

. imageEnhancement.h + .cc � Collection of some basic image enhancement and

manipulation methods - image composition, histogram equalization, convolution,

thresholding, smoothing with a box �lter or weighted averaging. The class is

implemented as a singleton object accesible anywhere in the package.
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. morphology.h + .cc � Collection of some basic morphological methods - ero-

sion and dilation with a square structuring element and thinning. The class

L_Morphology is implemented as a singleton object.

. segmentation.h + .cc � Class L_Segmentation (also a singleton) implements

a collection of some basic segmentation methods, e.g., Canny detection, Sobel

edge detector, blobs growing. filterLines �lters line detection results, �nds

similar lines (in slope and intercept), throws out duplicates and connects parts

of the same line.

Geometry

. geometry.h + .cc � Various geometry-related functions.

computeIntersectionPoints �nds intersection points of a line with an image,

getLineBresenhamCoords generates line point coordinates between given start

and end points using the Bresenham algorithm, etc.

. point2D.h � Template class for 2-D points (L_Point2D).

. param2D.h � L_Param2D is designed as a template class for 2-D parameter. It is

derived from the L_Point2D class.

. line2D.h � Structure L_Line provides a simple line representation. Includes

some special attributes for use with the Hough transform.

L_LineVotesComparator is used for line comparison based on the number of

votes in the accumulator cell of HT.

. array2D.h � Template class L_Array2D implements a 2-D array with some basic

manipulation methods.

. blob.h + .cc � Class L_Blob implements a vector of neighbouring pixels (of

L_Point2D<int> type) and their boundary, with some special methods for region

growing. Method computeElongatedness �nds the maximum elongatedness value

of the blob and other parameters. Class L_BlobList represents a list of L_Blob

objects.

Other

. configFile.h + .cc � A C++ class for reading con�guration �les, developed

by Richard J. Wagner.
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. dataVault.h + .cc � Class DataVault stores important image data (input �les,

mask, temporary data) in an easily accesible way, implemented as a singleton

object. Method loadData reads the input data speci�ed with command line

options.

. fitsHelper.h + .cc � A few routines to convert one image format to another

(convertFile), to get copy of a FITS �le (copyFitsFile) and to print FITS

manipulation error message (printFitsError).

. l_rts2AppImage.h + .cc � Contains the main application class L_Rts2AppImage,

derived from Rts2AppImage (in RTS2). Provides command line options process-

ing and starts the actual line detection using revealThemLuthien mehod.

. l_rts2Image.h + .cc � L_Rts2Image is a wrapper class for FITS �le manipu-

lation. It is derived from Rts2Image (RTS2 library).

. painter.h + .cc � Class drawing lines into output images and saving them via

ImageMagick routines.

. settings.h + .cc � Implements a class providing access to the main application

settings read from con�g �le. Settings is implemented as a singleton object.

Method parseConfig parses the con�guration �le 'config.cfg' and saves the

setting values.

. singleton.h � Singleton is a template class implementing the Singleton pattern

(for further details, see [63]).

. timer.h + .cc � Group of functions for precise time measurement (down to

1/1000 of a second).

. utils.h � Simple macros for rounding and comparing numbers, conversion be-

tween degrees and radians, some constants de�nition.

. config.cfg � Con�guration �le containing application parameter speci�cation.
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Appendix C

Resources

C.1 Developing Resources

The C++ code was developed using Netbeans ([32]) and Eclipse ([31]) IDE versions

for C/C++ development. The LATEX code of this work was written in LYX document

processor ([66]). For the bibliography management, JabRef ([37]) appeared to be

a good choice. For version control, CVS support integrated in the Eclipse IDE was

taken advantage of.

Some of the images were created in Ipe, the extensible drawing editor ([36]), and

Adobe Photoshop ([64]).

Documentation was generated by Doxygen ([16]), a documentation system for C++,

C, Java, Objective-C, Python, etc. Statistical HTML report from the CVS repository

was generated by StatCVS.

C.2 Used Packages

For FITS �les manipulation, the CFITSIO library is used (see Section 5.1.1.1). The

RTS2 software package (see Section 5.2) and ImageMagick library (see Section C.2)

are taken use of, as well.

�ImageMagick is a software suite to create, edit, and compose bitmap images. It

can read, convert and write images in a variety of formats (over 100) including DPX,

EXR, GIF, JPEG, JPEG-2000, PDF, PhotoCD, PNG, Postscript, SVG, and TIFF.

The functionality of ImageMagick is utilized through object-oriented C++ API called

Magick++. ImageMagick is free software, whose license is compatible with the GPL.

It runs on all major operating systems�, due to [35].
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C.3 Third-party Code

Some parts of the code (e.g., timer implementation, thinning algorithm in segmentation

and the L_Point2D class) are based on the code of the Image Processing Library 98

(IPL98) developed by René Dencker Eriksen, distributed under LGPL licence. For

more information, see [1].

The Canny detector method implementation is based on the code of the Open

Source Computer Vision Library [47] distributed under Intel License Agreement For

Open Source Computer Vision Library [48].

Con�guration File Reader for C++ (the ConfigFile class) is a simple open-source

code distributed under MIT License, created by Richard J. Wagner [12].
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Appendix D

Con�guration File

#########################################################

#### Configuration file for Luthien software package ####

#########################################################

#

# Comments are denoted by '#' and run till the end of line.

#

# This file should be located at $(PREFIX)/config.cfg, where

# $(PREFIX) is the standard prefix passed to the ./configure script

#

# Values names and values are separated by '='

# Numerical values are handled as numbers,

# string values which are handled as strings.

#

# Reasonable default values are set here and in the code itself.

# Not passing a value in the config file means the default value will

# be used. Be careful, because the default values may not fit your needs.

#

# Examples of use:

#

# apples = 7 # comment after apples

# price = 1.99 # comment after price

# sale = true # comment after sale

# title = one fine day # comment after title

# weight = 2.5 kg # comment after weight

# zone = 1 2 3 # comment after 1st point

# 4 5 6 # comment after 2nd point

# 7 8 9 # comment after 3rd point

#
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# Igor Gombos, <luthien.project@gmail.com>

#=======================================

# ---- Overall settings

#=======================================

# Offset for loading image data from a FITS file in the x-direction.

# Only every fitsLoadIncStepX-th pixel in x-direction will be loaded.

# Default value: 1.

fitsLoadIncStepX = 1

# Offset for loading image data from a FITS file in the y-direction.

# Only every fitsLoadIncStepY-th pixel in y-direction will be loaded.

# Default value: 1.

fitsLoadIncStepY = 1

# Minimum length of detected line.

# Default value: 75

lineMinPixelLength = 75

# Maximum number of returned detected lines.

# Default value: 50

linesNoMax = 50

# Maximum number of detected lines drawn in the output images.

# Default value: 5

drawLinesNoMax = 5

# Number of rotation steps for blob elongatedness computation.

# Default value: 20

blobElongatednessComputeStepsNo = 20

# Maximum pixel brightness value in the image.

# Default value: 65535

maxPixelValue = 65535

# In common greyscale images 255

# True if temporary results should be saved as images to disc.

# Default value: false

modeSaveTempImages = false
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# True if mask image should be used for results computation.

# Default value: true

flagUseImageMask = true

#=======================================

# ---- Hough Transform Method settings

#=======================================

# The threshold for image preprocessing stage in HT method

# is computed as (imageMaxValue * HTpreprocessThresholdRatio).

# Default value: 0.4

HTpreprocessThresholdRatio = 0.4

# Number of dilation iterations in the morphology stage of HT method.

# Default value: 1

HTdilateIterationsNo = 1

# The size of a square dilation structuring element is

# (HTdilateMaskSize x HTdilateMaskSize).

# Default value: 3

HTdilateMaskSize = 3

# Number of erosion iterations in the morphology stage of HT method.

# Default value: 1

HTerodeIterationsNo = 1

# The size of a square erosion structuring element is

# (HTdilateMaskSize x HTdilateMaskSize).

# Default value: 3

HTerodeMaskSize = 3

# Approximate thickness of lines detected.

# Used for Hough space accumulator resolution computation.

# Default value: 10

HTlineThickness = 10

# Maximum line gap for the line verify stage of HT method.

# Default value: 5

HTlineMaxGap = 5

# The threshold for peak detection is computed as
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# (sqrt(number of black pixels)

# * HTPeaksThresholdSensitivityFactor / FitsLoadIncStepX).

# Default value: 15

HTpeaksThresholdSensitivityFactor = 15

# Minimum number of votes for a peak to be accepted

# in the peak detection stage.

# Default value: 100

HTpeaksThresholdMin = 100

# Maximum number of peak detection iterations.

# Default value: 10

HTpeaksThresholdMaxSteps = 10

#=======================================

# ---- Region Growing Method settings

#=======================================

# The threshold for image preprocessing stage in RG method

# is computed as (imageMaxValue * RGpreprocessThresholdRatio).

# Default value: 0.5

RGpreprocessThresholdRatio = 0.5

# Minimum brightness value for a pixel to become part of

# a blob is (blob seed pixel value - foregroundThresholdTolerance)

# (first of the conditions).

# Default value: 10000

RGforegroundThresholdAddTolerance = 10000

# Minimum brightness value for a pixel to become part of

# a blob is (max pixel value * foregroundThresholdAbsMin)

# (second of the conditions).

# Default value: 0.3

RGforegroundThresholdMin = 0.3

# Minimum length (in pixels) of a blob to be accepted

# in the blob verify stage.

# Default value: 40

RGblobMinLength = 40

# similar to lineMinPixelLength
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# Minimum elongatedness of a blob to be accepted

# in the blob verify stage.

# Default value: 4.5

RGblobMinElongatedness = 4.5

# Minimum size (in pixels) of a blob to be accepted

# in the blob verify stage.

# Default value: 200

RGblobMinSize = 200

# We are not alone. We never have been. There are people outside.

# People with telescopes ... big telescopes.

# With cameras, taking thousands and thousands of images. All the time.

# I met one of them this day. How can I help you?, I ask.

# Look, we have these photos, he says.

# Of the stars, quiet and beautiful. And other great things, too, he says.

# Like meteorites. They are somewhere, they have to be.

# We need you to find them.

#

# You with us?

#=======================================

# ---- Edge Detection Method settings

#=======================================

# Threshold for filtering of Sobel edge detector results.

# Default value: 100

EDsobelThreshold = 100

# Low hysteresis threshold for the Canne edge detector.

# Default value: 0.05

EDcannyLowThreshold = 0.05

# High hysteresis threshold for the Canne edge detector.

# Default value: 0.5

EDcannyHighThreshold = 0.5

# Minimum size (in pixels) of a blob to be accepted

# in the blob verify stage.

# Default value: 200

EDblobMinSize = 200
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