

A Million Frames A Week
(while not going crazy)

Building an astronomical data archive
for CIT's ToφCAM (“ToffeeCAM”)

Ronan Cunniffe
UCD 18/08/2008

Stating the problem (1 of 3)

Cork Inst. of Tech. are building ToφCAM:
● 2-channel photometer - 2 x Andor 1Kx1K EMCCDs
● Designed for high time-resolution blazar monitoring
● For 0716+714, means ~5fps on a 1.5m telescope
● 5fps for a whole night >1TB; 360,000 frames

360,000 frames is a bigger problem than 1TB.

I need to provide a system to store, manage, search
and retrieve (and delete!) data arriving at this rate.

Stating the problem (2 of 3)

CIT already have ~300GB (~1M images)

● CAHA2.2 (CIT Andor/CIT software)
● CAHA1.23 (CIT Andor/CIT software)
● Kryoneri1.5 (CIT Andor/CIT software)
● BOOTES-IR0.6 (CIT Andor/RTS2)
● BOOTES-2 (IAA Andor/RTS2)
● WHT/ULTRACAM
● JKT
● Abastumani data (of some kind...)

I need to provide a search facility among this data -
effectively a derived “common dialect”

Stating the problem (3 of 3)

This must be a fairly common situation:

● Mix of data sources with different FITS dialects
● Very large volume (more than a single PC)
● Have developed in-house pipelines to cope with
volume....
● ...but that don't easily handle different instruments
● ...are not integrated into any kind of system.

I should provide a platform that pipelines can be built
on/interface to.

Stating the problem

Official project goals:
● Scale to 10TB or more
● Make millions of images searchable
● Hide differences between FITS header dialects
● Make it easy to feed query results to processing scripts.

Unofficial (but obviously relevant) goals:
● Use commodity protocols/technologies.
● Make it easy to add new dialects
● Make it easy to add more storage!
● Support for update-by-sneakernet
● Facilities for backup, mirroring, rebuild-from-scratch

Decisions (Part 1)....

There will be a DB.... Will it contain the image data? No.

So where are the images? Separate external filestore(s).

How do filestores work? Each one is a http server, and the
DB contains the URLs.

If I observed 0716+714 for 14,509 exposures (@1sec
each) yesterday, and for 4,143 exposures (@ 2 secs
each) today, how many URLs would the DB return if I
asked about observations of 0716 in the last 2 days?
“Results 1-10 of approximately 18,000” or “2”?

Storing and locating

Example: (the 3 kinds of unit)

/0716+714/AndorLaMayora/20080319/ might contain:

20080319-210423-004-RA.fits // single file

20080319-210424/20080319-210424-114-RA.fits // group of FITS
20080319-210424/20080319-210426-130-RA.fits
20080319-210424/20080319-210428-252-RA.fits

20080319-210429/fits_header.txt // Andor spool
20080319-210429/timing.txt
20080319-210429/00001.dat

...

...
20080319-210429/00600.dat

Decisions (Part 2)....
How do we search the DB? Via a web page. The search
terms are “common dialect” FITS keywords.

So.... what exactly is (in DB terms) a dialect? A
fingerprint, and a keyword translation table.

A fingerprint is? A combination of keywords: present in all
FITS files from a given source, and unique to them.

And what do we do if there isn't enough uniqueness in
the FITS headers for a fingerprint? Not sure... hunt down
the person responsible, to begin with.

How are these things created, anyway?
 Ah....

Decisions (Part 3....)
So the dialect of a system is...? The dialect of the first data
uploaded to it, then extended by any genuinely new keywords
used in data imported subsequently.

We don't start with a kind of core keyword set? Possibly
RA and DEC, otherwise ... probably no. We don't need to.

So all systems will be different? Yes.

Won't that cause problems? Pipelines will need some
keyword search-and-replace before they'll work at a new site.

What about sharing data? We never modify the original
FITS files. Two separate systems generally won't ever see
each other's local dialects.

Decisions (Technology)

LAMP (But also porting to Windows...)
● CIT teaches/uses Windows (almost exclusively?).
● Want ability to maintain code without Linux skills.

However...
● Unix scripting is far more powerful than any Windows
shell - and far more easily debugged and improved by
others.
● Unix shell-scripts (e.g. wrapped around IRAF... are
pretty-much the natural language for doing astronomy
processing).

The archive meets RTS2...

RTS2 writes images to /images/<complicated>.... and
signals to the archive upload mechanism where this is.

If RTS2's /images is available to the DB directly (and
available externally via http), it can refer to that hierarchy
without ever moving the files (zero-copy).

Need to implement a connector to get all of the target DB
data associated with the images into the archive.

(Note: the archive is not aiming for real-time behaviour,
there is no problem with many RTS2 instruments talking
to a single archive - no more ssh'ing to find the target id!)

The archive as processing platform

The obvious: a program can be launched from outside,
using the DB search interface (via web, maybe RPC-
XML) to find work to do.

The automatic: a script can be attached to a dialect
profile in the DB (i.e. a particular data source).
Incoming data matching that dialect is imported and
stored as normal, then the URL is passed to the script.

The possibly unworkable..... using GUIDs as a form of
citation...

The citation scheme

Niall Smith wants to be able to look at a light curve,
identify something odd, and immediately go and
retrieve the source frame whose photometry generated
the oddness. Right now, this is hard (for ~14,509
reasons).

This is Very Important for CIT, and so Very Unfortunate,
that I can't do it.... it requires smart tools, not just a
smart archive.

The citation scheme 2

Suppose we make 30 flats on a particular night, stored
as UUID <X>:1-30, and reject #20 (cosmic ray hit).

So we create our master flat (UUID <Y>), and note in it
that it was formed from UUID X:1-19,21-30.

When we reduce our data, we note that the flat was
UUID X. If we later discover a problem with that flat,
we can automatically identify, those data products that
used it, and recompute again.

Scalability

Capacity:
● The “structure” of the system is the LAN - we can build
in as many hard-disks as will fit in all the PCs we can
buy.
● The DB doesn't store per-image headers for most
images (only per-group). Particularly for the Cork group
(long time series), this is a big win. Cork's 300GB has
30MB of metadata (~x2 in DB form).

Performance:
● DB server is lightly loaded, only hit for queries. Image
serving is distributed, load borne by network.

Status

In development....

The big pieces:
● The help-user-to-build-new-dialect mechanism. Status:
I hate JKT. Was mostly working (under an earlier
design), then I read the JKT keyword comments.

● The search-engine interface. Status: Most of the pieces
work, but my web-design skills suck... slow going.

● Archive management tools (diff, sync, check-and-
delete, add/remove storage) are mostly buggy and
incomplete.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

